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I. Introduction  

Energy, especially electricity, is essential in developing and improving a country's welfare [1]. 

Studies show the important role of electricity consumption in stimulating economic growth and 

supporting the transition to more environmentally friendly production practices with lower carbon 

emissions. Estimating energy demand is crucial to the capacity and transmission system planning 

process, energy generation strategies, and determining pricing strategies [2]. In addition, despite 

continuous progress in technological development and global population growth, the detrimental 

impact of using renewable energy sources on the climate is becoming increasingly clear and cannot 

be ignored [3][4]. This problem demands serious attention and immediate action to reduce dependence 
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Advanced analytical approaches are required to accurately forecast the energy sector's 
rising complexity and volume of time series data.  This research aims to forecast the 
energy demand utilizing sophisticated Long Short-Term Memory (LSTM) 
configurations with Attention mechanisms (Att), Grid search, and Particle Swarm 
Optimization (PSO). In addition, the study also examines the influence of Min-Max 
and Z-Score normalization approaches in the preprocessing stage on the accuracy 
performances of the baselines and the proposed models. PSO and Grid Search 
techniques are used to select the best hyperparameters for LSTM models, while the 
attention mechanism selects the important input for the LSTM. The research compares 
the performance of baselines (LSTM, Grid-search-LSTM, and PSO-LSTM) and 
proposes models (Att-LSTM, Att-Grid-search-LSTM, and Att-PSO-LSTM) based on 
MAPE, RMSE, and R2 metrics into two scenarios normalization: Min-Max, and Z-
Score. The results show that all models with Min-Max normalization have better 
MAPE, RMSE, and R2 than those with Z-Score. The best model performance is 
shown in Att-PSO-LSTM MAPE 3.1135, RMSE 0.0551, and R2 0.9233, followed by 
Att-Grid-search-LSTM, Att-LSTM, PSO-LSTM, Grid-search-LSTM, and LSTM. 
These findings emphasize the effectiveness of attention mechanisms in improving 
model predictions and the influence of normalization methods on model performance. 
This study's novel approach provides valuable insights into time series forecasting in 
energy demands. 
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on energy sources that have the potential to damage the environment and accelerate the transition to 

cleaner and more sustainable energy sources. This process is important to ensure adequate energy 

supply and optimize operational and financial efficiency in energy resource management. Energy 

demand predictions vary by period, with capacity planning requirements focusing on long-term 

estimates [5] based on economic or demographic factors [2]. Daily habits and seasonal influences 

mainly cause short-term fluctuations, while extreme weather conditions [6] and special events [7], 

such as holidays or sporting events, can result in unexpected changes in trends. Long-range planning 

requires accurate and consistent estimates of hourly demand, which is essential in an evolving 

environment for effective and reliable resource allocation. To solve this problem, finding an accurate 

and consistent assessment of energy demands is important. Stating energy demand with precision can 

enable more accurate planning strategies and efficient distribution of energy to various sectors in need. 

This process helps optimize the accuracy of energy demand forecasting and greatly influences 

strategic and operational decision-making in the energy sector.  

Intelligent algorithms based on Artificial Intelligence (AI) play a vital role in forecasting energy 

demand with high accuracy [8][9][10][11], which is crucial for effectively managing electrical energy 

consumption [12], generation, pricing and adapting to weather conditions to suit user needs [13]. 

Through the application of machine learning techniques, historical data is studied to form predictive 

models that optimize not only in projecting electrical energy needs but also in understanding the 

influence of variables such as weather on energy consumption and generation. The latest research 

explores in-depth simultaneous predictions of electricity demand, power generation composition and 

carbon emissions integrating the SDs model and PGMP model [5], and LSTM  [14] was used to 

optimize the benefits obtained during the investment life cycle while reducing the period required for 

investors in energy storage to recover the capital spent. This approach is critical in driving wider 

adoption of energy storage technologies, strengthening the financial well-being of projects, and 

supporting the transition to cleaner, more efficient energy systems.  

The study of multivariate time series data has traditionally been dependent on conventional 

statistical forecasting methods. As the size of datasets increases, accompanied by an increase in the 

number of variables and intricate non-linear relationships, the efficacy of conventional approaches 

diminishes. Deep learning techniques, specifically Recurrent Neural Networks (RNNs), present a 

promising prospect for achieving enhanced accuracy in the prediction of multivariate time series [15]. 

Long Short-Term Memory (LSTM) networks have been observed to exhibit superior performance in 

capturing long-term dependencies in sequential data compared to other RNN architectures [16]. 

Nevertheless, LSTM models have difficulties in effectively capturing the interdependencies present 

within a given dataset. The presence of this constraint is a hindrance to the accuracy of predicting.   

A hybrid model combining Convolutional Neural Networks (CNN) and Long Short-Term Memory 

(LSTM) has been developed to make accurate predictions regarding sales of New Energy Vehicles 

(NEVs) as well as efficiently manage infrastructure ownership [17]. When compared with traditional 

models or other hybrid models, this CNN-LSTM combination shows superiority in various evaluation 

metrics. This approach stands out for its ability to effectively process spatial and temporal data with 

CNN processing spatial features and LSTM handling time dependencies, resulting in more accurate 

and efficient predictions. Further, the method combines Graph Convolutional Network (GCN) and 

Long Short-Term Memory (LSTM) that advantages of both networks to extract spatial and temporal 

information from extensive datasets, resulting in more precise short-term power load estimates 

compared to earlier methods that utilize CNN-LSTM [18].  

These studies show that hybrid LSTM with other models can improve the accuracy of LSTM 

models. Attention processes are being emphasized as a means to address this fundamental issue [19]. 

By employing a strategic approach to selecting and prioritizing pertinent input data, these strategies 

enhance the model's ability to discern and evaluate various elements [20]. Attention mechanisms are 

utilized by models like LSTM to effectively capture intricate connections and interdependencies 

among several variables [21]. This is achieved by assigning diverse levels of importance or priority to 

different segments of the input sequence. Attention mechanisms play a crucial role in enhancing the 

ability of LSTM networks to comprehend intricate interdependencies within multivariate time series 

data. The enhancement is of utmost importance in predicting model correctness and durability when 
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dealing with intricate and non-linear variable relationships. Therefore, the integration of this 

combination exhibits significant promise in enhancing the accuracy of multivariate time series 

forecasting by the incorporation of intricate and thorough modelling of data dynamics. 

This research intends to analyze electrical energy consumption, generation, pricing, and the impact 

of weather. It proposes a predictive model based on data from relevant literature to enhance the 

accuracy of estimating these requirements. The primary advancements of this investigation, which set 

it apart from prior investigations, can be succinctly summarized as follows: 

(1) To examine the impact of min-max and z-score normalization methods on the accuracy of 

predictions. This study examines the impact of two normalization methods on the prediction 

performance of the baseline and proposed models.  

(2) To discover the optimal configuration that minimizes prediction error by introducing an LSTM 

model that incorporates attention mechanism, particle swarm optimization, and Grid search. The 

evaluation of this model is conducted using the Mean Absolute Percentage Error (MAPE), Root 

Mean Square Error (RMSE), and coefficient of determination (𝑅2) metrics. 

 This paper presents a fresh viewpoint on the modelling and forecasting of electrical energy 

demand, showcasing the potential of advanced methods in enhancing the comprehension and control 

of the fluctuations in energy use, generation, pricing, and weather effects. This research endeavours 

to employ cutting-edge artificial intelligence and data analysis approaches to offer superior and 

streamlined solutions for addressing present and future energy concerns. 

II. Methods  

The methodology of research to analyze the hourly energy demand time series dataset based on 

Attention, Particle Swarm Optimization (PSO), and Long Short-Term Memory (LSTM) is shown in 

Figure 1.  Initially, the method entails normalizing the dataset through the utilization of two distinct 

statistical techniques: Min-Max normalization and Z-Score normalization. Min-Max normalization 

rescales the features in the dataset to a specific range, typically [0, 1] or [-1, 1], while Z-Score 

normalization standardizes the features by adjusting them according to the mean and standard 

deviation of the dataset. After normalizing, the datasets are divided into separate training and testing 

sets. This means that the model will be trained on one part of the data and evaluated on another to 

determine its ability to make accurate predictions. 

The hyperparameter search space is established, encompassing the batch size, epochs, number of 

hidden layers, loss function, activation function, neurons, and optimizer. The hyperparameter tuning 

involves applying two separate processes: PSO and Grid Search. PSO is a computational technique 

that iteratively enhances a potential solution to a problem based on a specific measure of excellence. 

In contrast, Grid Search methodically explores a predetermined subset of the hyperparameter space. 

The experimental arrangement and configurations are compared. Baseline models, such as LSTM, are 

contrasted with models that have been optimized using Grid Search (Grid-search-LSTM) and PSO-

LSTM. An attention mechanism (Att) is added to the baseline as an Att-LSTM, Att-Grid-search-

LSTM, and Att-PSO-LSTM to aid the model in directing its attention toward select segments of the 

input sequence that hold greater relevance for the prediction task to increase the accuracy. This implies 

that the performance of the LSTMs and configured LSTM’s baselines will be evaluated against 

LSTMs enhanced with the attention mechanism, attention mechanism when combined with the 

hyperparameter tuning outcomes from Grid Search and PSO (Att-Grid-search-LSTM and Att-PSO-

LSTM). Lastly, the models are evaluated using three metrics: Mean Absolute Percentage Error 

(MAPE), Root Mean Square Error (RMSE), and Coefficient of Determination (𝑅2). 
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Fig. 1.  Research methodology 

A. Dataset  

The dataset was obtained from the Kaggle.com website in the form of a multivariate time series 

titled 'Hourly Energy Demand Time Series Forecast', provided in CSV format [22]. This dataset 

encompasses hourly electricity consumption data from January 2015 to December 2018. It comprises 

35,064 instances and 29 attributes. Within this dataset, the target attribute is the actual total load. 

However, the attribute for total load forecast is excluded from the analysis as it serves as a benchmark 

or comparison attribute to the target attribute. Consequently, the study focuses on 28 selected 

attributes. 

B. Preprocessing 

In pursuing rigorous analysis, this research significantly emphasizes preprocessing techniques to 

refine the raw data for subsequent testing [23]. Addressing missing values and ensuring uniformity 

through data normalization is paramount in this process. Missing data, a common occurrence in 

datasets, poses potential challenges to model performance. Thus, employing the deletion technique, 

which involves the removal of rows or columns containing missing values, becomes imperative [24]. 

By mitigating the presence of missing values, the dataset becomes more robust and conducive to 

accurate analysis. 

Data normalization emerges as a crucial step in ensuring consistency and comparability across 

different features within the dataset. The normalization process entails transforming the values within 

the data to a standardized range. The selection of an appropriate normalization method significantly 

influences the accuracy and reliability of subsequent analyses. This study implements two widely used 
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normalization methods: min-max as in (1) and z-score normalization as in (2). 𝑥 represents the tested 

data, 𝑥𝑚𝑖𝑛  represents the minimum attribute value of the tested data, 𝑥𝑚𝑎𝑥  represents the maximum 

attribute value of the tested data. 𝜇 represents the mean value of the data, 𝜎 represents the standard 

deviation. Each method offers distinct advantages in adjusting the data distribution, contributing to 

more reliable analytical outcomes. 

𝑚𝑖𝑛𝑚𝑎𝑥 =
(𝑥−𝑥𝑚𝑖𝑛)

(𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛)
                     (1) 

𝑧 − 𝑠𝑐𝑜𝑟𝑒 =
𝑥−𝜇

𝜎
                     (2) 

In the context of this research, min-max normalization scales the data to a range between 0 and 1, 

effectively preserving the relative relationships between data points while ensuring uniformity [25]. 

Z-score normalization transforms the data distribution to have a mean of 0 and a standard deviation 

of 1, thereby standardizing the data within a range of -1 to 1 [26]. This normalization technique 

facilitates the identification of outliers and provides a clearer understanding of the data distribution. 

By meticulously implementing these preprocessing steps, the research aims to enhance the quality and 

reliability of subsequent analyses, yielding more robust findings and insights. The example 

normalization results of min-max and z-score are presented in Table 1. 

Table 1.  Example of normalization results 

Actual Values Min-max Normalization Value Z-score Normalization 

25385 0.319666 -0.723934 

24382 0.276008 -0.943172 

… … … 

29735 0.509010 0.226902 

28071 0.436580 -0.136820 

 

C. Forecasting Process 

In forecasting processes utilizing Long Short-Term Memory (LSTM) networks, the intricacies lie 

within the configuration of its parameters to optimize performance. LSTM, a type of Recurrent Neural 

Network (RNN), is renowned for effectively modelling sequential data by retaining information over 

extended periods [27]. However, determining the optimal parameters for LSTM poses a significant 

challenge due to the interplay between its various hyperparameters. Issues arise concerning selecting 

appropriate parameter settings, significantly impacting the model's predictive capabilities. To address 

this challenge, researchers turn to hyperparameter tuning techniques as a solution. 

Hyperparameter tuning becomes imperative to fine-tune the LSTM model's parameters and 
enhance its forecasting accuracy. This study employs two prominent hyperparameter tuning 
methodologies: grid search and Particle Swarm Optimization (PSO). The grid search methodology is 
favoured for systematically exploring all conceivable parameter combinations [28]. By exhaustively 
evaluating different hyperparameter configurations, grid search facilitates comprehensive parameter 
optimization, addressing the challenge of selecting the most suitable parameter settings. Pseudocode 
1 is the pseudocode for hyperparameter tuning using the grid search. 

 
PSEUDOCODE 1. Hyperparameter tuning using grid search 

Function grid_search_LSTM(parameters_range): 

    best_params = None 

    best_score = +infinity 

    for each parameter combination in parameters_range: 

        model = create_LSTM_model(parameter_combination) 

        score = evaluate_model(model) 

        if score < best_score: 

            best_score = score 

            best_params = parameter_combination 

    return best_params 
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Inspired by nature's social behaviour, PSO iteratively updates candidate solutions based on each 

solution's historical performance and local and global influences. Researchers can navigate complex 

parameter spaces more efficiently by leveraging PSO's capacity for global exploration and 

exploitation [21]. This enables the identification of optimal hyperparameter configurations that may 

not be apparent through conventional grid search alone. Through the synergistic combination of grid 

search and PSO, researchers endeavour to unlock the full potential of LSTM in forecasting tasks, 

thereby advancing the field of predictive modelling. The pseudocode for hyperparameter tuning 

using PSO is in Pseudocode 2.  

 
PSEUDOCODE 2. Hyperparameter tuning using PSO 

Function PSO_LSTM(parameters_range): 

    Initialize particles with random parameter values within parameters_range 

    Initialize velocity for each particle 

    Set global best_score = +infinity 

    Set global best_params = None 

    for each iteration: 

        for each particle: 

           Update velocity based on particle's current position and best 

position 

            Update particle's position using velocity 

            Evaluate particle's position 

            Update particle's best position if position is better than previous 

best 

            Update global best position if particle's best position is better 

than global best 

    return global best_params 

 

The tuned LSTM parameters and the results of the hyperparameter tuning are shown in Table 2. 

It highlights the distinctions between Grid Search and PSO when choosing the hyperparameter space. 

Grid Search utilizes a methodical approach by systematically evaluating every combination within 

the specified grid in order to identify the optimal answer. On the other hand, PSO utilizes a dynamic 

approach by using a group of solutions that continuously adapt according to their performance.  These 

hyperparameters include the batch size, the number of epochs, the number of hidden layers, the 

choice of the loss function, the activation function, the number of neurons per layer, and the 

optimizer. 

Table 2.  Hyperparameter tuning results 

Parameter Search Space Grid Search PSO 

Batch Size ‘100’, ‘1000’ 100 100 

Epoch ’50’, ‘100’ 50 100 

Hidden Layer ‘2’, ‘5’, ‘10’ 2 5 
Loss Function ‘MSE’, ‘MAE’ MSE MSE 

Activation Function ‘Tanh’, ‘Sigmoid’ Tanh Tanh 

Neuron ‘32’, ‘64’ 32 64 

Optimizer ‘Adam’, ‘RMSprop’ RMSprop RMSprop 

 

Both Grid Search and PSO concur on a batch size of 100, which denotes the number of training 

instances that are processed prior to updating the model's parameters. However, they differ in their 

selection of epochs, with Grid Search choosing 50 and PSO optimal with a longer training period 

with 100 epochs. This implies that PSO expects to get advantages from a training cycle that is 

extended in duration. The intricacy of the network, as indicated by the number of hidden layers, Grid 

Search chooses a model with two layers that is relatively simpler, whereas PSO prefers a more 

intricate structure consisting of 5 layers. This could indicate that PSO can traverse through complex 

models, potentially leading to improved performance. However, both approaches lay the best 

parameters with the Mean Squared Error (MSE) loss function and the Tanh activation function. The 

number of neurons per layer is another factor that distinguishes the two systems. Grid Search opts 

for a conservative 32 neurons, while PSO favours a more densely populated layer with 64 neurons. 

This differentiation could be crucial in ascertaining the model's capacity to comprehend and represent 

the fundamental patterns of the data. Ultimately, both approaches unanimously choose RMSprop as 
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the optimizer due to its effectiveness in managing noisy gradients and its capacity to adapt to various 

situations, highlighting its appropriateness for the given task. 

D. LSTM-Based Attention Mechanism, PSO, and Grid Search 

Figure 2 develops the proposed model: Attention LSTM, Att-PSO-LSTM, and Att-Grid-search-

LSTM. In the illustration, the hyperparameter tuning process is not only carried out by PSO but also 

by Grid search. After the hyperparameter tuning process is complete, the optimized hyperparameter 

settings are then applied to the LSTM. The next step is integrating the attention mechanism into 

LSTM, which plays an important role in improving the capabilities and effectiveness of the LSTM 

model. This attention mechanism helps the model to focus on more relevant information during the 

learning process, thereby enabling the model to achieve better and more accurate performance in data 

processing. 

 

Fig. 2. LSTM Based Attention Mechanism, PSO, and Grid Search 

The attention mechanism is implemented through a series of crucial phases [29]: At first, the 

LSTM outputs, represented as [ℎ1, ℎ2, ℎ3, … , ℎ𝑛], are subjected to a nonlinear transformation 

resulting in [𝑢1, 𝑢2, 𝑢3, … , 𝑢𝑛]. During shield tunneling operations, specific characteristics have a 

significant impact on the shield's direction and position, making it necessary to prioritize these 

parameters. In an attention weight matrix [𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛], 𝑎 indicates the importance of each 

intermediate stage. Afterwards, the mechanism performs a weighted aggregation of the input 

parameters and their related weights to produce the encoding vector 𝑉. The encoding vector 𝑉 is used 

to obtain the final output, 𝑓𝑡, through a decoding process. The precise formula in question is as in 

(3) to (5). 

𝑢𝑘 = tanh(𝑊𝑘ℎ𝑘 + 𝑏𝑘)                       (3) 

𝑎𝑘 =
exp (𝑢𝑘

𝑇𝑢𝑠)

∑ exp (𝑢𝑘
𝑇𝑢𝑠)𝑛

𝑘=1

                        (4) 

𝑉 = ∑ 𝑎𝑘ℎ𝑘
𝑛
𝑘                         (5) 

Within this framework, 𝑊𝑘 represents the weight matrices, 𝑏𝑘 represents the bias term, 𝑎𝑘 represents 

the normalized attention weights and 𝑢𝑠 represents the randomly initialized time series attention 

matrix. 
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E. Evaluation 

The evaluation stage constitutes a pivotal phase wherein the model's performance is assessed 
through error calculations to gauge its effectiveness. In this research, the evaluation employs various 
metrics, including the Mean Absolute Percentage Error (MAPE) as in (6), Root Mean Square Error 
(RMSE) as in (7), and 𝑅2 as in (8). 𝐴𝑖 is the actual value, 𝐹𝑖 is the predicted value, 𝑛 is the number of 
predictions, 𝑆𝑆𝑟𝑒𝑠 is the residual sum of squares and 𝑆𝑆𝑡𝑜𝑡 is the total sum of squares. 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑

|𝐴𝑖−𝐹𝑖|

𝐴𝑖

𝑛

𝑖=1
                       (6) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝐹𝑖 − 𝐴𝑖)2𝑛

𝑖=1
                      (7) 

𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
                        (8) 

MAPE is a pivotal indicator of the model's accuracy, providing insights into its predictive 
capabilities [30]. RMSE assumes significance, particularly in outlier detection, shedding light on the 
model's susceptibility to extreme data points [31]. Meanwhile, 𝑅2 facilitates correlations between the 
original and predicted data, elucidating the model's ability to capture underlying relationships [32]. 

III. Result and Discussion 

In this section, we discuss the potential of LSTM models in predicting sequential data, focusing 
on Hourly Energy Demand Time Series Forecast data. This research explores various LSTM model 
configurations and tests two data normalization techniques, namely Min-Max and Z-Score, to identify 
a more optimal normalization approach. Furthermore, this research investigates the effect of parameter 
optimization techniques, such as Grid search and PSO, and the use of attention mechanisms in 
increasing the accuracy of model predictions. Specifically, this study focuses on three attention-based 
models, Attention LSTM, Attention Grid-search-LSTM, and Attention-PSO-LSTM, to compare their 
performance with three baseline models: LSTM, Grid-search-LSTM, and PSO-LSTM. Figure 3 and 
Figure 4 depict a graph of visualization for time series forecasting with actual data as a time series of 
real values, and a model generates the prediction line. 

 

(a) 

 

(b) 

 

(c) 

Fig. 3. Attention LSTM’s configuration (Min-max normalization): (a) Att-LSTM, (b) Att-Grid Search-LSTM, and (c) Att-

PSO-LSTM 
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This study tests the effectiveness of various model configurations using three main evaluation 

metrics: MAPE, RMSE, and 𝑅2. MAPE measures prediction error as a percentage, allowing an 
intuitive understanding of model accuracy. RMSE provides a measure of prediction error in the same 
units as the prediction target, providing insight into the deviation of predictions from actual values. 
Meanwhile, 𝑅2 shows the proportion of variability in the dataset that can be explained by the model, 
providing an idea of the model's fit to the data.  

The model configurations with attention mechanism with min-max normalization: Att-LSTM 

(Figure 3a), Att-Grid-search-LSTM (Figure 3b), and Att-PSO-LSTM (Figure 3c) indicate that the 

models have been improved compared to the other baselines model without an attention mechanism 

and another model with z-score on Figure 4a to Figure 4c. The graph is presumably associated with 

the preceding discourse on the performance of the proposed model with an attention mechanism in 

forecasting the hourly energy consumption time series. The proximity of the lines suggests that the 

proposed model with the attention mechanism's predictions is highly accurate and closely aligned 

with the actual values. The peaks and troughs of both lines appear to be in close alignment, indicating 

that the model accurately represents the underlying trends and seasonality in the data. 

 

(a) 

 

(b) 

 

(c) 

Fig. 4. Attention LSTM’s configuration (Z-Score normalization): (a) Att-LSTM, (b) Att-Grid Search-LSTM, and (c) Att-

PSO-LSTM 

Min-Max normalization demonstrates improved performance in comparison to Z-Score 
normalization, as indicated by the higher 𝑅2 values observed in all models with Min-Max 
normalization (Table 3). This indicates a stronger correlation between forecasts and real data. As an 
illustration, the Attention-PSO-LSTM model, when combined with Min-Max normalization, has an 
outstanding 𝑅2 value of 0.9233. In contrast, the standard LSTM model, which utilizes Z-Score 
normalization, only achieves an 𝑅2 value of 0.4215.  

Optimizing parameters is a crucial process for enhancing the performance of machine learning 
models. This study utilizes two parameter optimization strategies, namely Grid search and PSO, to 
identify the optimal parameter configuration that enhances the accuracy of model predictions. The 
impact of different parameter optimization strategies on model enhancement is evident through 
variations observed. Parameter optimization using Grid search enhances performance, as 
demonstrated by the Grid-search-LSTM model with Min-Max normalization, achieving a MAPE of 
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3.8666% and a 𝑅2 of 0.9072, surpassing the performance of the regular LSTM model. PSO, with its 
superior parameter search capabilities, yields improved outcomes, as demonstrated in PSO-LSTM 
with Min-Max. This model achieves a MAPE of 3.7164% and a 𝑅2 of 0.9118. 

Table 3.  Evaluation results 

Normalization Model MAPE (%) RMSE R2 

Min-Max 

LSTM 3.9658 0.0626 0.9010 

Grid-search-LSTM 3.8666 0.0606 0.9072 

PSO-LSTM 3.7164 0.0591 0.9118 

Attention LSTM 3.7067 0.0601 0.9088 

Attention Grid-search-LSTM 3.3658 0.0580 0.9150 

Attention PSO-LSTM 3.1135 0.0551 0.9233 

Z-Score 

LSTM 10.4299 0.7600 0.4215 

Grid-search-LSTM 4.8196 0.3894 0.8482 

PSO-LSTM 4.6450 0.3781 0.8568 

Attention LSTM 9.9980 0.4629 0.7681 

Attention Grid-search-LSTM 4.2946 0.3850 0.8516 

Attention PSO-LSTM 4.1820 0.3827 0.8534 

 

Once put into practice, the attention approach significantly improves the precision of forecasts. 

Models that incorporate attention mechanisms, such as Attention LSTM with Min-Max, demonstrate 

higher performance than models that do not utilize attention. The MAPE reduces to 3.7067% and the 

𝑅2 value increases to 0.9088. This confirms that the model's ability to select important components of 

sequential data significantly improves accuracy. This in-depth analysis highlights the significance of 

carefully selecting data pre-processing strategies, rigorously optimizing parameters, and applying 

innovative technologies such as attention mechanisms in order to improve the performance of LSTM 

models for sequential data prediction tasks. Other factors that are taken into consideration include the 

importance of ensuring that the parameters are optimized. These are two necessary aspects. 

IV. Conclusion 

This research introduces a promising method for evaluating the Hourly Energy Demand Time 
Series dataset. This article aims to determine the most efficient methods for predicting energy demand 
by analyzing different model setups. LSTM combines attention mechanisms, grid search, and PSO. 
The dataset is normalized using both Min-Max and Z-Score approaches in order to maintain data 
consistency. The study subsequently investigates the enhancement of LSTM models by employing 
PSO and Grid Search techniques to select the hyperparameter, while the Attention mechanism is 
introduced to improve model performance by giving priority to important regions of the input 
sequence. The results show that all models utilizing Min-Max normalization exhibit superior MAPE, 
RMSE, and R^2 values compared to those using Z-Score normalization. The model with the highest 
performance is observed in Att-PSO-LSTM and Att-Grid-search-LSTM, Att-LSTM, PSO-LSTM, 
Grid-search-LSTM, and LSTM then follow it. This research enables a methodical evaluation of 
various model configurations based on LSTM with PSO and Grid search hyperparameters 
optimization under min-max and z-score normalization to achieve better effectiveness, perhaps 
resulting in an optimized solution for the current forecasting issue. 
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