
Knowledge Engineering and Data Science (KEDS) pISSN 2597-4602

Vol 7, No 1, April 2024, pp. 101–116 eISSN 2597-4637

https://doi.org/10.17977/um018v7i12024p101–116

©2024 Knowledge Engineering and Data Science | W : http://journal2.um.ac.id/index.php/keds | E : keds.journal@um.ac.id

This is an open-access article under the CC BY-SA license (https://creativecommons.org/licenses/by-sa/4.0/)

Timbre Style Transfer for Musical Instruments Acoustic Guitar
and Piano using the Generator-Discriminator Model

Widean Nagari 1, Joan Santoso 2,*, Esther Irawati Setiawan 3

Institut Sains dan Teknologi Terpadu Surabaya

Jl. Ngagel Jaya Tengah No. 73-77, Surabaya 60284, Indonesia
1widean.n23@mhs.istts.ac.id; 2 joan@stts.edu*; 3 esther@stts.edu

*corresponding author

I. Introduction

In an information-driven world, a company's technological infrastructure is the core of its daily
operations and a fundamental pillar for its growth and adaptation to a constantly evolving business
environment. The Company, aware of this reality, is embarking on a strategic initiative to modernize
its virtual server infrastructure by implementing Docker technology, a leading solution in
virtualization at the operating system level. The company’s current infrastructure is heavily reliant on
VMware virtualization technology. While VMware has provided a robust solution for server
virtualization, several challenges have emerged over time that are affecting the scalability, operating
costs, and overall business agility. Here is an overview of these challenges: scalability limitations,
increasing operating costs, and complexities hindering business agility. Given these challenges, the
company recognizes the need to transition to a more flexible, scalable, and cost-effective solution.
Docker-based server virtualization offers a promising alternative, providing lightweight containers
that can run across various environments with minimal overhead. This transition aims to address the
limitations of the current VMware infrastructure by offering improved scalability, reduced operating
costs, and enhanced business agility through streamlined management and deployment processes.

Neural style transfer techniques were initially developed for image processing, where models
transfer artistic style from one image to another. Many works have been produced in this domain,
including ones related to timbre conversion. Timbre or tone colour is the quality of the sound made
by an object, which allows listeners to distinguish whether two sounds have similar or different sound
qualities and characteristics. Only musical instruments that can produce harmonious combinations
have timbre, while objects such as metal rods that only make one sound do not have timbre
characteristics.

Music Style Transfer is creating creative music that resembles human work by combining different
songs' musical content and musical styles. The image style transfer concept explained previously

ARTICLE INFO A B S T R A CT

Article history:

Received 27 June 2024

Revised 15 July 2024

Accepted 23 August 2024

Published online 05 September 2024

Music style transfer is a technique for creating new music by combining the input
song's content and the target song's style to have a sound that humans can enjoy. This
research is related to timbre style transfer, a branch of music style transfer that focuses
on using the generator-discriminator model. This exciting method has been used in
various studies in the music style transfer domain to train a machine learning model
to change the sound of instruments in a song with the sound of instruments from other
songs. This work focuses on finding the best layer configuration in the generator-
discriminator model for the timbre style transfer task. The dataset used for this
research is the MAESTRO dataset. The metrics used in the testing phase are
Contrastive Loss, Mean Squared Error, and Perceptual Evaluation of Speech Quality.
Based on the results of the trials, it was concluded that the best model in this research
was the model trained using column vectors from the mel-spectrogram. Some
hyperparameters suitable in the training process are a learning rate 0.0005, batch size
greater than or equal to 64, and dropout with a value of 0.1. The results of the ablation
study show that the best layer configuration consists of 2 Bi-LSTM layers, 1 Attention
layer, and 2 Dense layers.

This is an open-access article under the CC BY-SA license

(https://creativecommons.org/licenses/by-sa/4.0/).

Keywords:

Discriminator

Generator

Music

Style Transfer

Timbre

http://u.lipi.go.id/1502081730
http://u.lipi.go.id/1502081046
http://journal2.um.ac.id/index.php/keds
mailto:keds.journal@um.ac.id
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

102 W. Nagari et al. / Knowledge Engineering and Data Science 2024, 7 (1): 101–116

makes the Music Style Transfer problem interesting to solve. Music Style Transfer focuses on creating
new music that combines input song content and target song style with human sound characteristics
so that humans can enjoy it.

This research uses the Generator-Discriminator model to solve the timbre style transfer, a branch
of music style transfer. Timbre style transfer is an important topic in music style transfer because it
transforms sound characteristics from one instrument to another without changing the melody or
harmony being played. This technology enriches music production by offering an unprecedented
variety of sounds, allowing producers and musicians to create more innovative and unique works. In
addition, timbre style transfer also drives the development of machine learning technology in sound
analysis and synthesis. With the ability to retain a song's essence while changing the sound's
characteristics, timbre style transfer provides an exciting new dimension in music exploration and
creation. In this problem, we train a Generator-Discriminator model to change the sound of a musical
instrument from one song by using the sound of a musical instrument from another.

Research on neural style transfer was pioneered by Gatys et al. [1], who introduced the concept of
combining the style and content of two images using a pre-trained CNN model. The emergence of the
idea of neural style transfer makes similar research in the sound domain, especially music, interesting.
Several methods have been used, such as GAN-based models. Brunner et al. [2] utilized the
CycleGAN model to transfer genres to songs by training using a dataset containing songs from the
Jazz, Classic, and Pop genres in MIDI form. Research utilizing the RaGAN model was conducted by
Lu et al. [3] by using unsupervised learning techniques. The dataset in research conducted by Lu et al.
utilizes piano and guitar solo performance videos, which are preprocessed to become mel-
spectrograms. Dong et al. [4] developed the MuseGAN model, a sequential GAN model trained to
generate multi-track musical compositions, including melody, harmony, and rhythm. This model can
produce coherent and diverse musical compositions. Yang et al. [5] introduced the MidiNet, a
Convolutional-GAN-based model designed for creating music with MIDI files. MidiNet models are
trained using large datasets containing MIDI files to capture complex patterns and structures in music
and produce enjoyable music. Zaoxu Ding et al., in their research [6], propose a method called
SteelyGAN, a music genre transfer model that uses GANs to transfer musical style at both pixels on
piano rolls and latent levels.

Besides GANs, autoencoder models are also effective for performing timbre style transfer. Brunner
et al. [7] introduced the MIDI-VAE, a Variational Autoencoder-based model capable of handling
polyphonic music. Brunner et al. show that the MIDI-VAE model can transfer styles to symbolic
music and automatically change the pitch, dynamics, and instruments from classical music to jazz
music. Cifka et al. [8] developed a VQ-VAE model trained with self-supervised learning techniques
to obtain separate representations of timbre and pitch. Research by Cifka et al. using Lakh MIDI
Dataset and RealTrack datasets, which are preprocessed in such a way that they are in STFT form.
Wu et al. [9] utilise a VAE model combined with a Transformer called MuseMorphose. Wu’s research
focuses on transferring style to produce pop piano music. Cifka et al. [10] presented a one-shot style
transfer method for accompaniment styles in the symbolic music domain called Groove2Groove,
based on AutoEncoder. Cifka’s research focuses on the case of accompaniment styles in popular music
and jazz. Hung et al. [11] used an autoencoder-based model that can take a piece of music and make
it sound like it was played in a different style, focusing on changing the instrument's sound quality
without changing the core tone. Hung's research used the MedleyDB+Mixing Secret and MuseScore
datasets.

This research has several similarities and differences with the previous studies that have been
described. This research and the research conducted by Lu et al. [3] utilized the mel-spectrogram data
representation and the GAN model to perform music style transfer. The mel-spectrogram is a form of
spectrogram that uses mel-scale to represent the shape of the waveform of an audio signal, which can
capture the time and frequency information of the signal in a concise and informative manner, making
it suitable for music-style transfer tasks. Besides mel-spectrograms, many other studies use MIDI data
representations, such as Brunner et al. [2], Yang et al. [5], Cifka et al. [8], etc. Lu et al. use the RaGAN
(Relativistic average GAN) model, which differs from traditional GANs by making the discriminator
predict relative authenticity, i.e., whether a given real data example is more realistic than artificial
data. This relativistic approach aims to stabilize the training and produce higher-quality output. In
contrast, this study uses the standard GAN model, which focuses on generating timbre-transferred
songs by optimizing the generator to produce mel-spectrograms that capture the target style and retain

 W. Nagari et al. / Knowledge Engineering and Data Science 2024, 7 (1): 101–116 103

the original content. In terms of loss function, this study uses BCE Loss as adversarial loss and
Contrastive Loss as reconstruction loss in the training phase. Lu et al. [3] use Chi-Square Loss as
adversarial loss and to count the reconstruction loss as in (1).

𝐿𝑟𝑒𝑐 = 𝐿𝑟𝑒𝑐
𝑥 + 𝐿𝑟𝑒𝑐

𝑦
= |𝑥 − 𝑥̂|1 + |𝑦 − 𝑦̂|1 ()

Where 𝑥 and 𝑦̂Are the reconstructed features of 𝑥 and 𝑦respectively. This study focuses on musical
timbre style transfer, where the main goal is to combine the musical content and musical style of the
sounds of different instruments in 2 songs with the same melody by utilizing the standard GAN model.
This research focuses on two musical instruments: piano and guitar.

 This paper presents a novel Generator-Discriminator model for timbre-style transfer,
advancing the current state of research in this domain. The model is rigorously validated through
comprehensive testing methodologies, including ablation studies, hyperparameter tuning, input
dimension assessments, evaluations using slower-tempo songs, and performance analysis of the
discriminator using a threshold-based approach. Additionally, contrastive learning techniques are
employed, specifically utilizing the Contrastive Loss Function, to enhance the training efficacy of the
generator model. This multi-faceted approach demonstrates the robustness of the model and
establishes its effectiveness in achieving superior timbre style transfer outcomes, underscoring the
innovative contributions of this research.

II. Methods

This section will discuss the system created, starting from the dataset model architecture and the
input and output.

A. Dataset

The dataset used in this research is the MAESTRO (MIDI and Audio Edited for Synchronous
Tracks and Organization) dataset. This dataset is a collection of audio created by PG Music and
available for download from Magenta. MAESTRO consists of approximately 200 hours of piano
performance aligned with notation labels and audio waves. MAESTRO dataset has been used in
several studies, such as Somrudee D. et al. [12], Xiaomei X. et al. [13], and Donelly P. et al. [14]. Two
datasets are provided, namely datasets in .wav and. midi formats. However, because the size of the
.wav dataset is large (120GB), we used a smaller one- the Midi dataset at 81MB. Datasets consist of
a folder containing several MIDI files and a .csv file containing data from all MIDI files. There are
1276 MIDI files with Grand Piano sounds collected from 10 years of competition implementation
International Piano-e-Competition (2004, 2006, 2008, 2009, 2011, 2013, 2014, 2015, 2017, 2018).
Because using MIDI format, all songs in this dataset only have the sound of a piano musical instrument
and no noise. A limitation of this dataset is that it includes only piano sounds. To meet the needs of
this research, we had to convert the piano sounds to guitar using a MIDI editor application. In addition,
adding other datasets to this research could help generalize the data further. However, this research
focuses exclusively on using the MAESTRO dataset.

Pre-processing is an essential technique for preparing a dataset to ensure that incoming data is
clean and usable. In this research, six pre-processing stages were conducted to ready the dataset for
input into the model. The first stage, Song Selection, involved choosing songs from the MAESTRO
dataset, which contains 1,276 songs. Due to the large number, a subset with a total duration of 445
minutes was selected based on criteria such as appropriate length, minimal staccato technique usage,
and clear audibility. The second stage, Convert Piano Files to Guitar Files, used the MidiEditor
application to change the sound from a grand piano to an acoustic guitar, retaining the same musical
tones but altering the instrument's sound for the training process.

Next, Convert File Format was carried out to convert the MIDI files into .mp3 format, enabling
them to be processed using the Librosa library. In the fourth stage, Loading MP3 into STFT, the .mp3
files were loaded into the Python program using the Librosa library's `librosa.load()` function,
resulting in the song's Short-Time Fourier Transform (STFT) signal and sample rate. The fifth stage,
STFT to Mel-Spectrogram, converted the STFT signal into a Mel-spectrogram using the
`librosa.feature.melspectrogram()` function, creating a matrix with dimensions of 128 by the length
of the song. Finally, in the Matrix to Vector stage, the Mel-spectrogram matrix (128 columns by song

104 W. Nagari et al. / Knowledge Engineering and Data Science 2024, 7 (1): 101–116

length) was converted into a vector with a size of 1 by 128, simplifying the input for machine learning
models by reducing it to a single dimension for easier processing.

B. Model Architecture

The primary model in this research is the Generator-Discriminator model [15]. The generator-
discriminator architecture consists of several parts. The flow of this architecture begins with the
dataset preprocessing stage, followed by data processing in the generator and discriminator models.
Finally, the predicted data will be passed through the postprocessing stage until it becomes an output
that humans can enjoy. An image of the generator-discriminator architecture can be seen in Figure 1.

Fig. 1. Generator-discriminator architecture

The Generator Model creates a new version of an entered song by changing the musical
instruments used in the song. For example, when a song is played on a piano, the generator will
produce a version of the music played on a guitar and vice versa. The quality of the generator model
can be measured from the output produced, which can deceive the discriminator model so that the
discriminator model will assume that the output from the generator is original data. The generator
architecture diagram can be seen in Figure 2.

Fig. 2. Generator model architecture

The generator takes one type of input and produces one kind of output. The input is in the form of
a .mp3 file preprocessed to produce mel-spectrogram column vectors. We use mel-spectrogram
because mel-spectrogram is one of the most popular in sound representation, as seen in many studies
such as Lu et al. [3] and Giorgi et al. [16]. This input goes through several machine-learning layers in
the model. First, the input will be entered into the Bidirectional Long Short-Term Memory (Bi-LSTM)
layer [17] to capture context information from both directions and understand the global context of
the input data. The output from Bi-LSTM is then fed into the Attention model [18] for focusing on
relevant context to improve model performance. This attention mechanism is also found in studies
such as Cifka O. [10] and Guo Z. et al. [19]. The type of attention layer used is simple attention, also
called global attention. Simple attention is a mechanism used in natural language processing to
emphasize input elements based on their relevance to a particular target or focus element. Simple
attention allows the model to calculate complex relationships between each pair of words in a sentence
without regard to the order of the words. Attention weights are given to input elements based on their
relevance to the target element being processed in simple attention. In simple attention, three

 W. Nagari et al. / Knowledge Engineering and Data Science 2024, 7 (1): 101–116 105

calculations are carried out, namely calculating the similarity score, attention score, and the new
form/representation after passing through the attention layer as in (2) to (4).

𝑤𝑒𝑖𝑔ℎ𝑡 ∗ 𝑖𝑛𝑝𝑢𝑡𝑡 = 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑠𝑐𝑜𝑟𝑒 ()

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑠𝑐𝑜𝑟𝑒) = 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑠𝑐𝑜𝑟𝑒 ()

𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑠𝑐𝑜𝑟𝑒 ∗ 𝑖𝑛𝑝𝑢𝑡 = 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑛𝑒𝑤 ()

The Attention model's output is fed into another Bi-LSTM layer to enhance learning. The output
from the second Bi-LSTM is then passed to a dense layer, producing a vector that has undergone
timbre style transfer. For instance, if the input sounds like a piano, the output sounds like a guitar, and
vice versa.

The generator’s predicted vector output is evaluated using the Contrastive Loss function [20] and
Binary Cross-Entropy Loss (BCE Loss). Contrastive Loss minimizes the distance between inputs that
should be similar and maximizes the distance between inputs that should be different. There have been
many studies that apply contrastive loss to perform contrastive learning in this domain, such as Dong
et al. [21], Manco et al. [22], and Koo et al. [23]. The concept is based on calculating the distance
between the model output and the target data using Euclidean distance. Contrastive Loss is calculated
for each pair of input vectors x1 and x2 with a binary label y indicating whether the pair is similar or
different. Contrastive loss is calculated as in (5).

𝐶𝑜𝑛𝑡𝑟𝑎𝑛𝑠𝑡𝑖𝑣𝑒𝑙𝑜𝑠𝑠 = (1 − 𝑦) ∗ 𝑑2 + 𝑦 ∗ max(𝛼 − 𝑑, 0)2 ()

BCE Loss is a loss function commonly used in binary classification problems, where the goal is to
predict a binary output (0 or 1) based on input data. This function measures the difference between
the label predicted by the discriminator model and the natural data labels. The smaller the BCE Loss
value, the better the output produced by the generator because the discriminator assumes that the
production is the actual data. Calculations for BCE Loss utilize the model output probability values
and perform log-transformation of these probabilities to avoid infinite values. The smaller the value
of BCE Loss, the closer the predicted results are to the actual label. BCE Loss can be calculated as in
(6).

 ()

The discriminator model is responsible for evaluating whether the output produced by the
generator model is natural or synthetic data. If the generator model is good enough, the discriminator
model will be fooled and incorrectly assume that the output produced by the generator model is
accurate data. However, because the discriminator model is trained together with the generator model,
the discriminator model is not that easy to fool. As the training progresses, the discriminator model
will become more competent in distinguishing between natural and synthetic data. The discriminator
model architecture diagram can be seen in Figure 3.

Fig. 3. Discriminator model architecture

106 W. Nagari et al. / Knowledge Engineering and Data Science 2024, 7 (1): 101–116

The discriminator architecture has two types of input during the training process, which will be
explained in the input and output sections. The discriminator model processes these two input types
through a dense layer and a sigmoid activation function to produce output with a value range of 0 to
1. The output produced by this model is only one, the real/fake label, which has a value range of 0 to
1. The closer the value is to 0, the more confident the model is that the input provided is the output of
the generator model or synthetic data, while the closer the value is to 1, the model is more confident
that the feedback provided is the original data. The prediction results from the discriminator model
were evaluated using the BCE Loss function described previously. The training process for the piano-
to-guitar model proposed is in Pseudocode 1.

PSEUDOCODE 1. Training process for the piano-to-guitar model proposed

BEGIN

For each epoch DO

 For each batch(piano, guitar) DO

 SET real_data TO piano

 SET real_labels TO tensor of ones with shape (batch_size, 1)

 SET fake_data TO generator(guitar) // generate an initial fake data

 SET fake_labels TO tensor of zeros with shape (batch_size, 1)

 // Train discriminator

 CALL discriminator.zero_grad()

 SET real_outputs TO discriminator(real_data) // evaluate the real data

 SET real_loss TO criterion_real_D(real_outputs.to(device),

real_labels.to(device))

 CALL real_loss.backward()

 SET fake_outputs TO discriminator(fake_data.detach()) // evaluate the

fake data

 SET fake_loss TO criterion_fake_D(fake_outputs.to(device),

fake_labels.to(device))

 CALL fake_loss.backward()

 CALL optimizer_D.step()

 // Train generator

 CALL generator.zero_grad()

 SET g_outputs TO generator(piano) // generator model called to generate

new data

 SET d_outputs TO discriminator(g_outputs) // evaluate generator output

 SET g_loss_adv TO criterion_G_adv(d_outputs.to(device),

real_labels.to(device))

 SET g_loss_rec TO criterion_G_rec(g_outputs, guitar)

 SET g_loss TO g_loss_adv + g_loss_rec

 CALL g_loss.backward()

 CALL optimizer_G.step()

 END LOOP

 CALL scheduler_G.step() // learning rate scheduler works here

END LOOP

END

Pseudocode 1 is outlining the training process for the piano-to-guitar model proposed over a series

of epochs, where each process processes multiple data batches. For each epoch, the code iterates
through batches of data consisting of piano and guitar. The data is initially set to piano, and real labels
are initialized to a tensor of ones. Fake data is generated by passing the guitar through the generator
model, and fake labels are initialized to a tensor of zeros. The training process begins with the
discriminator. The discriminator's gradients are reset to zero, and then it evaluates the actual data to
produce real_outputs. The loss for the actual data is computed using the BCE Loss, which compares
real_outputs to the actual labels. This loss is then backpropagated. Next, the discriminator evaluates
the fake data (with gradients detached to prevent updating the generator during this step) to produce
fake_outputs. The loss of the fake data is also computed using the BCE LOSS, which compares

 W. Nagari et al. / Knowledge Engineering and Data Science 2024, 7 (1): 101–116 107

fake_outputs to the fake labels. This loss is also backpropagated. The discriminator's parameters are
then updated.

Following the discriminator training, the generator is trained. The generator's gradients are reset to
zero, and it generates new data by processing the piano song. The discriminator evaluates this
generated data. The adversarial loss is computed using BCE Loss, comparing d_outputs to the actual
labels, encouraging the generator to produce more realistic data. Additionally, a reconstruction loss is
calculated using Contrastive Loss, comparing g_outputs to the guitar, enabling the generator to
produce data structurally like a guitar. The total generator loss (g_loss) is the sum of the adversarial
and reconstruction losses and is backpropagated. The generator's parameters are then updated using
Stochastic Gradient Descent (SGD). After processing all batches in an epoch, the learning rate
scheduler updates the learning rate to ensure the training process adjusts dynamically. This entire
process repeats for each epoch until the training is complete.

C. Input and Output

During training, the model receives piano and guitar songs as mel-spectrogram. The mel-
spectrogram matrix is then transposed to produce a matrix with the size of (column, row). The
generator model receives input as a mel-spectrogram matrix, cut into a vector measuring 1 x 128, with
128 columns. One song is input to the generator for timbre style transfer, while the other serves as a
target for evaluation. The discriminator receives the generator's output during training, distinguishing
between fake (generator output) and actual (original song) inputs. During testing, the generator
processes the input song alone. For an entire song with a 100 x 128 mel-spectrogram, the model
receives 100 input vectors of 1 x 128.

Because two models are used, namely the generator model and the discriminator model, the output
of each model is different according to its role in the system. The generator model produces output as
a vector of timbre-style transfer results. In contrast, the discriminator model produces output from
real/fake labels to evaluate the generator results. All generator prediction results are formed into a list
of vectors or matrices and then transposed to produce a mel-spectrogram with dimensions (rows,
columns). Mel-spectrogram then goes through a post-processing stage to make a .mp3 file.

III. Results and Discussion

Optimizing Docker environments can significantly improve application performance, resource
utilization, and operational efficiency. Below, we detail Docker optimization’s potential results and
benefits across different dimensions.

Testing will be carried out using 6 test scenarios: ablation study, effect of hyperparameters, effect
of input dimensions, test with slow tempo songs, and threshold test on the discriminator. Each
experiment was carried out using ten epochs of the training process. Each trial result data will be
equipped with a table to make it easier to understand the results. The information in the form of tables
is hoped to increase understanding of the results of experiments on the trained, intelligent machine
models.

As previously discussed in the Model Architecture section, the training loss and validation loss
values in this test are calculated using the Contrastive Loss combined with the BCE Loss metrics.
These two-loss metrics were selected for their specific benefits: we chose Contrastive Loss to focus
on the similarity between the waveform of the output generated by the generator and the label/target
data, ensuring that similar timbres are closely aligned while distinct timbres remain separated.
Additionally, BCE Loss (Binary Cross-Entropy Loss) is used to evaluate whether the output of the
generator resembles the original data or is still considered artificial by the discriminator, as BCE Loss
is well-suited for optimizing the discriminator's performance in distinguishing between actual and
generated samples.

The loss values used in the testing process, including hyperparameter tuning, the effect of the input
dimension, and tests for songs with a slower tempo, are obtained using the PESQ and MSE metrics.
The PESQ (Perceptual Evaluation of Speech Quality) metric was chosen for its ability to evaluate
sound quality, allowing us to assess the clarity of the sound produced by the generator and identify
any noise present. Meanwhile, we chose the MSE (Mean Squared Error) metric to evaluate the

108 W. Nagari et al. / Knowledge Engineering and Data Science 2024, 7 (1): 101–116

accuracy of the waveform produced by the generator in comparison to the target data, providing a
measure of the overall difference between the generated output and the desired result.

A. Ablation Study

The Ablation Study aims to identify each component's relative contribution and determine which
elements most influence model performance. This research will test ten models and observe the
resulting loss values. The model with the lowest loss value is used as the primary model. The value
that will be observed is the loss value from each experiment. Detailed results of the ablation study trial
are shown in Table 1.

Table 1. Test results on the ablation study

Model
Piano to Guitar Guitar to Piano

Training Loss Validation Loss Training Loss Validation Loss

Default 52.061 60.045 416.739 746.695

Dense Layer + ReLU 52.523 62.298 493.462 829.131
Bi-LSTM to LSTM 53.61 58.227 518.731 794.879

No Attention Layer 53.999 59.822 526.079 825.763

3 Dense Layer 54.836 62.28 569.896 854.622

1 Dense Layer 62.149 63.644 642.856 888.964
3 Bi-LSTM 64.059 69.955 556.587 885.357

Added Conv1D 66.139 69.041 1681.598 1992.078

Conv1D Without Attention 61.54 83.244 1766.178 2105.699

Conv1D + MaxPooling 72.019 78.74 2564.744 3008.396

In Table 1, experiments have been carried out with ten types of models. These ten models were

trained using the same number of epochs, batch size, and learning rate. The default model is the model
described in the Generator-Discriminator Architecture section. Meanwhile, other models are produced
by adding or subtracting layers from the model. The following is a discussion of each model tested:

• Default Model: The best model tested is the default model because it has the lowest training
loss and validation loss of the other nine models, the piano-to-guitar model obtained a training
and validation loss of 52.061 and 6 0.045. In contrast, the guitar to the piano model resulted in
a training and validation loss of training and validation loss of 416.739 and 746.695,
respectively. The configuration for this model is Bi-LSTM->Attention->Bi-LSTM->Dense-
>Dense.

• Using ReLU: Adding the ReLU activation function to 2 dense layers in the model produces a
loss value that is slightly larger than the default model. Because it produces unsatisfactory
performance, the ReLU activation function is not used. The configuration for this model is Bi-
LSTM->Attention->Bi-LSTM->ReLU(Dense)->ReLU(Dense).

• Replacing Bi-LSTM with LSTM: Replacing the Bi-LSTM layer with a regular LSTM aimed
to test whether bidirectional processing was necessary. Results showed that Bi-LSTM produced
smaller loss values, with training and validation losses for the guitar-to-piano model being
much higher than those for the primary model. Therefore, the main model uses Bi-LSTM
layers. The configuration for this model is LSTM->Attention->LSTM->Dense->Dense.

• Removal of the Attention Layer: The following test involved removing the attention layer. This
test aimed to see the impact of using the attention layer. The increase in loss value from the
previous model shows that the attention layer plays an essential role in the primary model, so
this layer is used in the main model. The configuration for this model is Bi-LSTM->Bi-LSTM
->Dense->Dense.

• Using 3 Dense Layers: Adding one dense layer to the primary model gives it three thick layers.
This layer's addition produces unsatisfactory results because it produces a higher loss value.
Increasing the loss value of the default model concludes that too many dense layers are
unsuitable for the model. The configuration for this model is Bi-LSTM->Attention->Bi-LSTM-
>Dense->Dense->Dense.

• Using 1 Dense Layer: After it was discovered that too many dense layers resulted in more
significant loss, the next try was to reduce the number of dense layers by one so that the model
only had one dense layer. Reducing the number of dense layers also does not provide better

 W. Nagari et al. / Knowledge Engineering and Data Science 2024, 7 (1): 101–116 109

results because the resulting loss value is more significant. Increasing training loss significantly
means that too few dense layers are not good, so two dense layers are used. The configuration
for this model is Bi-LSTM->Attention->Bi-LSTM->Dense.

• Using 3 Bi-LSTM Layers: Recognizing the importance of Bi-LSTM, an additional Bi-LSTM
layer was tested after the second one. Despite decreased training loss for the guitar-to-piano
model, both models showed increased validation loss, indicating overfitting. Thus, the primary
model uses only 2 Bi-LSTM layers. The configuration for this model is Bi-LSTM->Bi-LSTM-
>Attention->Bi-LSTM->Dense->Dense.

• Addition of 1 Conv1D Layer: In this experiment, a Conv1D layer was added to the part before
the first Bi-LSTM. The increase in loss value reached 2-3 times. In this way, it can be concluded
that the Conv1D layer is unsuitable. The configuration for this model is Conv1D->Bi-LSTM-
>Attention->Bi-LSTM->Dense->Dense.

• Use of 1 Conv1D Layer and Removal of the Attention Layer: Curiosity about the previous
model's significant loss value increase led to the next experiment, which involved removing the
attention layer to see if it was incompatible with the Conv1D layer. While the guitar-to-piano
model initially showed the increase, this time, the piano-to-guitar model did. This confirms that
the attention layer is essential and cannot be removed. The configuration for this model is
Conv1D->Bi-LSTM->Bi-LSTM->Dense->Dense.

• Use of 1 Conv1D Layer accompanied by MaxPooling: The final experiment used 1 Conv1D
layer with a MaxPooling layer, resulting in a significant loss value increase for the guitar-to-
piano model. This suggests that MaxPooling caused a loss of important information, leading to
its exclusion. Since none of the Conv1D layer experiments were satisfactory, it was decided to
discontinue using this layer type. The configuration for this model is MaxPooling(Conv1D)-
>Bi-LSTM->Attention->Bi-LSTM->Dense->Dense.

Of the ten model configurations tested, the default model, which is the primary model in this study,
gave the best results. Full details about this default model configuration can be found in the model
architecture section. The default model performed better than the other nine configurations. Regarding
training loss, the default model outperformed all nine other model configurations. The default model
outperformed the guitar-to-piano model for validation loss but was lost to the Bi-LSTM model
configuration, which was transformed into LSTM on the piano-to-guitar model.

In this ablation study, several conclusions can be drawn. First, using Bi-LSTM results in a lower
loss value than LSTM due to Bi-LSTM's ability to capture information from both directions of the
sequence. Layer Attention is also needed to highlight the important part of the feature sequence
generated by Bi-LSTM. The best number of layers for the Dense layer is 2, as too many/too few dense
layers result in higher loss. Using too many Bi-LSTMs also causes a high loss value due to the
overfitting factor. Lastly, the Conv1D layer and the MaxPooling and ReLU activation functions are
unsuitable for this task.

From the mentioned conclusion, it is known that the configuration of 2 Bi-LSTM, 1 Attention, and
2 Dense Layer (Bi-LSTM->Attention->Bi-LSTM->Dense->Dense) is the best in this task. Each layer
in the configuration has its own role, as follows:

• Bi-LSTM (First): This technique captures the temporal patterns and features of the input mel-
spectrogram by accessing information from both directions of the sequence.

• Attention: Highlights the essential part of the feature sequence generated by the first Bi-LSTM,
helping the model to focus on the most relevant information.

• Bi-LSTM (Second): This process further processes the information highlighted by Attention,
improving the temporal context representation.

• Dense (First): Transforms the representation obtained from the second Bi-LSTM into a more
compact form suitable for the next step.

• Dense (Second) refines the output of the first dense layer into a final representation best suited
for the target timbre.

110 W. Nagari et al. / Knowledge Engineering and Data Science 2024, 7 (1): 101–116

B. Affect of Hyperparameter

This subchapter discusses the experimental results by utilizing the best model from the
experimental results in the ablation study to be trained using various hyperparameters. The goal is to
find the best hyperparameters for the primary model. The hyperparameters that will be tested are
learning rate, dropout, and batch size. The value that will be observed is the loss value from each
experiment. In selecting values for the tested hyperparameters, we first tested various values
randomly. Next, we selected some values with significant distances to observe the difference in the
resulting loss. The trial compared four learning rates: 0.01, 0.005, 0.001, and 0.0005 as in Table 2.

Table 2. Test results on the effect of learning rate

Learning Rate
Piano to Guitar Guitar to Piano

Training Loss Validation Loss Training Loss Validation Loss

0.01 NaN NaN NaN NaN

0.005 78.003 83.253 NaN NaN
0.001 58.561 66.126 937.193 1303.798

0.0005 57.469 64.055 861.191 1159.181

From Table 2, the smaller the learning rate, the more stable the training process. This can be seen
from the learning rate 0.01 caused by NaN (Not a Number) or infinity losses due to instability (losses
fluctuate). Conversely, rates that were too small hindered learning progress. From the experiments
that have been carried out, it can be concluded that the ideal learning rate is 0.0005. However, at some
point, the model will usually experience convergence. Therefore, it is a good idea to implement a
learning rate scheduler (e.g., reducing the rate by 0.5 every few epochs) to help manage convergence.
Next is a test of the effect of dropouts shows in Table 3.

Table 3. Test results on the effect of dropout

Dropout
Piano to Guitar Guitar to Piano

Training Loss Validation Loss Training Loss Validation Loss

0.1 57.509 66.327 848.842 1110.385
0.3 60.131 63.589 919.171 1186.996

0.5 62.083 63.897 960.628 1182.089

In this trial, three dropout values were compared, namely 0.1, 0.3, and 0.5. From Table 3, the
results shows that higher dropout values led to more significant losses due to fewer model parameters.
This is caused by reducing the number of model parameters trained by the dropout value. Dropout is
used to prevent overfitting. The best dropout value from these tests is 0.1, yielding the lowest loss
(57.509 for training and 66.327 for validation) compared to 0.3 and 0.5. In the batch size trial, 16, 32,
and 64 batch sizes were compared like in Table 4.

Table 4. Test results on the effect of batch size

Batch Size
Piano to Guitar Guitar to Piano

Time Each Epoch
Training Loss Validation Loss Training Loss Validation Loss

16 62.966 71.714 1094.137 1515.173 2:14
32 58.929 65.918 962.214 1345.849 1:22

64 56.394 63.31 844.255 1140.588 0:54

Table 4 shows that the larger batch sizes for this study result in smaller training and validation
losses. Batch size 64 produces the lowest training and validation loss for the piano-to-guitar model:
56.394 (training) and 63.31 (validation), while the guitar-to-piano model: 844.255 (training) and
1140.588 (validation). However, substantial batch sizes can increase losses due to limited evaluation
time per data batch. Meanwhile, the smaller the batch size, the longer it takes to complete one epoch.
Smaller batch sizes lead to longer epochs but more frequent evaluations. Batch size 64 performed best
in speed and losses, taking 54 seconds per epoch.

C. Affect of Input Dimension

In this experiment, the input consists of a 1-dimensional array (column vector) and a 2-dimensional
array (matrix) representing the power mel-spectrogram. Both test scenarios will utilize the Contrastive

 W. Nagari et al. / Knowledge Engineering and Data Science 2024, 7 (1): 101–116 111

Loss, MSE Loss, and PESQ [24] metrics to evaluate model performance. The Contrastive Loss metric
is used during training, while MSE Loss and PESQ are used to assess the model prediction results at
the testing stage. Table 5 shows the test results using dimension one input (column vector).

Table 5. Test results on one dimension input (vector)

Model Train Loss Valid Loss PESQ
MSE

With Target With Input

Piano to Guitar 52.061 60.045 1.096
Guitar to Piano 416.739 746.695 1.1

From Table 5, the piano-to-guitar model had a training and validation loss of 51.061 and 60.045,

while the guitar-to-piano model lost 416.739 and 746.695, respectively. The PESQ value of the guitar-
to-piano model (1.1) is slightly higher than the piano-to-guitar model (1.096), indicating that the sound
produced by the guitar-to-piano model is more precise. However, the Mean Squared Error (MSE)
value of the piano-to-guitar model is lower than that of the guitar-to-piano model. The MSE value of
the prediction results of the piano-to-guitar model is 3.201 ∗ 10−3 with the target (guitar sound) and

4.931 ∗ 10−3with the input (piano sound). For the prediction results of the guitar-to-piano model, the
MSE value is 7.432 ∗ 10−3 with the target (piano sound) and 5.713 ∗ 10−3with the input (guitar
sound). A low MSE value indicates that the prediction results are close to the expected results.
However, for the guitar-to-piano model, the prediction results are still more like the input than the
target. Therefore, a longer training process is required. The waveform predicted by the model with
column vector input can be seen in Figure 4 and Figure 5.

Fig. 4. Prediction results of piano to guitar model with vector input

Fig. 5. Prediction results of guitar to piano model with vector input

Table 6. Test results on two dimension input (matrix)

Model Train Loss Valid Loss PESQ
MSE

With Target With Input

Piano to Guitar 512.168 425.389 1.112
Guitar to Piano 7338.361 8266.958 1.15

In the second trial using 2-dimensional input or a matrix, Table 6 indicates higher losses than

column vector input. The piano-to-guitar model had training and validation losses of 512.168 and
425.389. Meanwhile, the guitar-to-piano model had losses of 7338.361 and 8266.958, respectively.
This higher loss is due to processing more elements with the 2D matrix. The PESQ values for the
piano-to-guitar and guitar-to-piano models are 1.112 and 1.15, respectively. The MSE value of the
prediction results in the two models was also checked for the input and target. The prediction results
of the piano-to-guitar model produce MSE values equal. 1.625 ∗ 10−3 to the target (guitar sound) and

3.347 ∗ 10−3To the input (piano sound). Meanwhile, the prediction results of the guitar-to-piano

112 W. Nagari et al. / Knowledge Engineering and Data Science 2024, 7 (1): 101–116

model produce MSE values of 4.813 ∗ 10−3 to the target (piano sound) and 3.089 ∗ 10−3To the input
(guitar sound). The waveform predicted by the model with matrix input can be seen in Figure 6 and
Figure 7.

Fig. 6. Prediction results of piano to guitar model with matrix input

Fig. 7. Prediction results of guitar to piano model with matrix input

The MSE value of the model with matrix input is lower than the model with column vector input,
presumably because the prediction results of the model with matrix input have more stable
characteristics. In contrast, the prediction results of the model with vector input tend to be more varied
with increasing and decreasing amplitudes. These amplitude variations can cause an increase in error
values when the amplitude is too high or too low. For comparison, the wave shape of the original song
can be seen in Figure 8 and Figure 9.

Fig. 8. Original song wave shape with piano sounds

Fig. 9. Original song wave shape with guitar sounds

D. Test for Song with a Slower Tempo

This subchapter discusses the generator model's performance in handling the same song at a slower
tempo. Songs with a slower tempo were changed to 0.75 times the speed of the original song. Five
song samples were used in this trial for each model. Two metrics, PESQ and MSE, will be used to
evaluate the results of the two songs. Table 7 shows the PESQ scores for songs tested with both trained
models.

 W. Nagari et al. / Knowledge Engineering and Data Science 2024, 7 (1): 101–116 113

Table 7. Test results for song with a slower tempo (PESQ)

Model Sample PESQ

Sample Song Slower Song

Piano to Guitar

1 1.155 1.075
2 1.074 1.023

3 1.128 1.034

4 1.097 1.027

5 1.086 1.094

Guitar to Piano

1 1.134 1.019

2 1.1 1.036

3 1.599 1.032

4 1.199 1.025
5 1.151 1.019

From Table 7, in the piano-to-guitar model, the original samples generally had higher PESQ scores,

except for the 5th sample, where the slower song scored higher. The most considerable PESQ score
difference was 0.094 in sample 3, and the smallest was 0.0085 in sample 5. Conversely, the guitar-to-
piano model consistently favored original samples, with the most significant difference of 0.567 in
sample 3 and the smallest of 0.064 in sample 2. Table 8 shows the test results for song with a slower
tempo (MSE).

Table 8. Test results for song with a slower tempo (MSE)

Model Sample MSE

Sample Song Slower Song

Piano to Guitar

1
2
3
4
5

Guitar to Piano

1
2
3
4
5

From Table 8, the MSE values obtained by the two piano-to-guitar and guitar-to-piano models for

original and slow songs. This suggests that the results from the slower songs were more like the target.
Overall, the MSE value of the original song is lower than the MSE value of the slower song. For the
piano to guitar model, the range of MSE difference values ranges from 1.598 ∗ 10−3 (sample 5) to

3.334 ∗ 10−3 (sample 4). Meanwhile, in the guitar-to-piano model, the range of MSE difference
values ranges from 4.388 ∗ 10−3 (sample 5) to 9.104 ∗ 10−2 (sample 4).

Overall, it can be concluded that the model can handle songs with both original and slower tempos.
This is shown by the PESQ and MSE scores, which are not too far apart between the two types of
songs. This shows the model's ability to maintain the quality and suitability of timbre in songs that
have changed the tempo. Thus, the model generally produces quality output, regardless of the tempo
changes applied.

E. Threshold Test on Discriminator

In this section, we explain the performance of the discriminator trained to evaluate the generator's
output. The approach is to count the number of discriminator predictions that produce values below a
threshold and divide these results by the total test data. Several thresholds have been tested, namely
0.5, 0.1, 0.05, 0.01, and 0.005.

Table 9 displays scores from the piano-to-guitar and guitar-to-piano models based on different
threshold values. Scores at thresholds 0.5, 0.1, and 0.05 were not notably significant. For the piano-
to-guitar model, scores of 0.5, 0.1, and 0.005 were 0.997, 0.985, and 0.971, respectively. The guitar-
to-piano model scored 0.9994, 0.996, and 0.993 at these thresholds. A notable score difference
appeared at a threshold of 0.01: the piano-to-guitar model scored 0.858, while the guitar-to-piano
model scored 0.952. At 0.005, the piano-to-guitar model scored 0.782, and the guitar-to-piano model

114 W. Nagari et al. / Knowledge Engineering and Data Science 2024, 7 (1): 101–116

scored 0.931. This indicates the discriminator's strong ability to evaluate the generator's results, with
minimal confusion even at shallow threshold values, resulting in relatively high scores.

Table 9. Threshold test result on discriminator

Model Threshold Score

Piano to Guitar

0.5 0.997

0.1 0.985
0.05 0.971

0.01 0.858

0.005 0.782

Guitar to Piano

0.5 0.999
0.1 0.996

0.05 0.993

0.01 0.952

0.005 0.931

F. Implication and Contribution in Real Life

The timbre style transfer technique opens new opportunities for exploration and creativity in music
production. With the development of this technique, music producers are expected to dig deeper into
their creativity, producing unique songs with unusual instrument sounds. For example, a solo guitar
performance played with piano sounds, or a classical piano composition played with guitar sounds.
This technology enables a blend of styles and sounds that have never been heard before, giving a new
dimension to music creation. In addition to contributing to the development of science in the music
domain, this research is also expected to encourage the interest of researchers to develop it in other
domains such as photography, design, etc.

In machine learning, this research can potentially encourage the development of more efficient and
accurate models for handling sound data, especially in music. With this research, it is expected that
there will be more and more exciting adoptions of similar techniques in the future, such as the creation
of digital musical instruments that can mimic various timbres in real-time, the development of
applications that can automatically change the style and characteristics of sound in musical
compositions, and improvements in voice recognition technology and more natural and detailed voice
synthesis.

Several real-life adaptations are based on neural style transfer techniques, such as the one used in
this research. Zhao et al. [25] developed a model that focuses on creating musical accompaniments
that match a given melody. This model helps musicians or music producers generate background
music (such as chords, basslines, or drum patterns) that match the style and mood of a song.
Radzikowski et al. [26] developed an autoencoder model and CNN to perform accent modification on
speech audio. The dataset used contains English sentences spoken by Japanese people, namely the
UME-ERJ dataset. Yuan et al. [27] utilized the VCTK dataset and autoencoder model to perform style
transfer on human voices. This paper focuses on making it easier for computers to change how
someone sounds (in terms of style), even if the computer has never heard that style before. It does this
by teaching the computer to understand and separate the different parts of a voice to mix and match
them more effectively. Zhang et al. [28] developed a model to generate high-quality singing voices
with invisible styles, such as unique voice color, emotion, pronunciation, and articulation ability.
Koutsogiannaki et al. [29] developed a way to make male voices sound more gender-ambiguous by
borrowing certain speaking styles usually associated with female voices. The goal was to produce a
voice that did not sound male or female but somewhere between. Marco Pasini [30] developed a
MelGAN-VC model that focuses on converting one person's voice to sound like another person's voice
and transferring audio styles (like making something sound from a different era or genre) over long
audio samples.

However, remember that developments in this field can also have negative impacts. One of the
possible adverse effects is copyright infringement, where a song can be plagiarized by simply
changing the sound of the instruments. Also, using this technology can reduce creativity, as music
producers may be tempted to rely on this technology to make music. Furthermore, the distinctiveness
of a piece of music can be lost when musicians no longer use their full self-expression in the music
creation process. Therefore, ethics and self-awareness are necessary for using technologies such as
timbre-style transfer techniques. Music industry players must use these technologies responsibly and

 W. Nagari et al. / Knowledge Engineering and Data Science 2024, 7 (1): 101–116 115

respect the artistic values and originality in every work produced. This is important to maintain the
integrity of music and ensure that technology remains a tool, not a substitute for human creativity.

IV. Conclusions

This research obtained several essential conclusions from the results of the trials that have been

carried out. Through timbre style transfer, songs can transform significantly, creating a different sound

from the original song. Songs that initially had a piano sound became guitar sounds and vice versa.

This research utilizes the Generator-Discriminator model to perform timbre-style transfer tasks. This

model was trained using several hyperparameter configurations, with an initial learning rate of 0.005

and a learning rate scheduler to adjust the training process, dropout of 0.1, and batch sizes of 64 and

128. The input type entered the model was a column vector mel-spectrogram from the song, which

was converted. The trained model handled songs with the original tempo and songs with a slower

tempo. The trained discriminator model can evaluate the generator results very well because the

confusion level is minimal. This can be seen from the fact that even though the threshold value used

is very low, the discriminator still gives a high score.

The main challenge of this research is the difficulty in obtaining an appropriate model, which

makes it hard to reduce the loss values generated during the training process. This issue affects the

quality of the generated waveforms, resulting in imperfect and noisy audio, particularly in the guitar-

to-piano model. Choosing the proper loss function also presents a challenge, as multiple experiments

are required to find a suitable one. This study's limitations include using only one type of dataset,

specifically the MAESTRO dataset. The research does not utilize pre-trained models and focuses

solely on developing a custom model.

For future research, it is recommended to try using an autoencoder-based model such as VQ-VAE.

Using a more varied dataset is also recommended because it is hoped that it can overcome the problem

of overfitting. It is also recommended to select a dataset to use a dataset that already has the sounds

of all the musical instruments we want to convert, for example, in this study, the guitar and piano.

Several different datasets are also highly recommended to make the dataset more generalized. Apart

from that, further research can utilize pre-trained models because the large number of features that the

selected pre-trained model has learned is expected to improve the prediction results of the model.

Declarations

Author contribution

All authors contributed equally as the main contributor of this paper. All authors read and approved the final paper.

Conflict of interest

The authors declare no known conflict of financial interest or personal relationships that could have appeared to influence
the work reported in this paper.

Additional information

Reprints and permission information are available at http://journal2.um.ac.id/index.php/keds.

Publisher’s Note: Department of Electrical Engineering and Informatics - Universitas Negeri Malang remains neutral

with regard to jurisdictional claims and institutional affiliations.

References

[1] L. Gatys, A. Ecker, and M. Bethge, “A Neural Algorithm of Artistic Style,” J. Vis., vol. 16, no. 12, p. 326, Sep. 2016.

[2] G. Brunner, Y. Wang, R. Wattenhofer, and S. Zhao, “Symbolic Music Genre Transfer with CycleGAN,” in 2018 IEEE

30th International Conference on Tools with Artificial Intelligence (ICTAI), IEEE, Nov. 2018, pp. 786–793.

[3] C.-Y. Lu, M.-X. Xue, C.-C. Chang, C.-R. Lee, and L. Su, “Play as you like: Timbre-enhanced multi-modal music

style transfer,” in Proceedings of the aaai conference on artificial intelligence, 2019, pp. 1061–1068.

[4] H.-W. Dong, W.-Y. Hsiao, L.-C. Yang, and Y.-H. Yang, “MuseGAN: Multi-track Sequential Generative Adversarial

Networks for Symbolic Music Generation and Accompaniment,” Proc. AAAI Conf. Artif. Intell., vol. 32, no. 1, Apr.

2018.

http://journal2.um.ac.id/index.php/keds
https://doi.org/10.1167/16.12.326
https://doi.org/10.1109/ICTAI.2018.00123
https://doi.org/10.1109/ICTAI.2018.00123
https://doi.org/10.1609/aaai.v33i01.33011061
https://doi.org/10.1609/aaai.v33i01.33011061
https://doi.org/10.1609/aaai.v32i1.11312
https://doi.org/10.1609/aaai.v32i1.11312
https://doi.org/10.1609/aaai.v32i1.11312

116 W. Nagari et al. / Knowledge Engineering and Data Science 2024, 7 (1): 101–116

[5] L.-C. Yang, S.-Y. Chou, and Y.-H. Yang, “MidiNet: A convolutional generative adversarial network for symbolic-

domain music generation,” arXiv Prepr. arXiv1703.10847, 2017.

[6] Z. Ding, X. Liu, G. Zhong, and D. Wang, “SteelyGAN: Semantic Unsupervised Symbolic Music Genre Transfer,”

2022, pp. 305–317.

[7] G. Brunner, A. Konrad, Y. Wang, and R. Wattenhofer, “MIDI-VAE: Modeling Dynamics and Instrumentation of

Music with Applications to Style Transfer.” Sep. 20, 2018.

[8] O. Cifka, A. Ozerov, U. Simsekli, and G. Richard, “Self-Supervised VQ-VAE for One-Shot Music Style Transfer,”

in ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE,

Jun. 2021, pp. 96–100.

[9] S.-L. Wu and Y.-H. Yang, “MuseMorphose: Full-Song and Fine-Grained Piano Music Style Transfer with One

Transformer VAE.” May 09, 2021.

[10] O. Cifka, U. Simsekli, and G. Richard, “Groove2Groove: One-Shot Music Style Transfer With Supervision From

Synthetic Data,” IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 28, pp. 2638–2650, 2020.

[11] Y.-N. Hung, I.-T. Chiang, Y.-A. Chen, and Y.-H. Yang, “Musical Composition Style Transfer via Disentangled

Timbre Representations.” May 30, 2019.

[12] S. Deepaisarn, S. Chokphantavee, S. Chokphantavee, P. Prathipasen, S. Buaruk, and V. Sornlertlamvanich, “NLP-

based music processing for composer classification,” Sci. Rep., vol. 13, no. 1, p. 13228, Aug. 2023.

[13] X. Xue and Z. Jia, “The Piano-Assisted Teaching System Based on an Artificial Intelligent Wireless Network,” Wirel.

Commun. Mob. Comput., vol. 2022, pp. 1–9, Jan. 2022.

[14] P. J. Donnelly and V. Ebert, “Transcription of audio to midi using deep learning,” in 2022 7th International Conference

on Frontiers of Signal Processing (ICFSP), IEEE, 2022, pp. 130–135.

[15] I. Goodfellow et al., “Generative adversarial networks,” Commun. ACM, vol. 63, no. 11, pp. 139–144, Oct. 2020.

[16] B. Di Giorgi, M. Levy, and R. Sharp, “Mel Spectrogram Inversion with Stable Pitch.” Aug. 26, 2022.

[17] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Comput., vol. 9, no. 8, pp. 1735–1780, Nov.

1997.

[18] A. Vaswani et al., “Attention Is All You Need.” Jun. 12, 2017.

[19] Z. Guo, J. Kang, and D. Herremans, “A domain-knowledge-inspired music embedding space and a novel attention

mechanism for symbolic music modelling,” in Proceedings of the AAAI Conference on Artificial Intelligence, 2023,

pp. 5070–5077.

[20] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality Reduction by Learning an Invariant Mapping,” in 2006 IEEE

Computer Society Conference on Computer Vision and Pattern Recognition - Volume 2 (CVPR’06), IEEE, pp. 1735–

1742.

[21] D. Yao et al., “Contrastive Learning with Positive-Negative Frame Mask for Music Representation,” in Proceedings

of the ACM Web Conference 2022, New York, NY, USA: ACM, Apr. 2022, pp. 2906–2915.

[22] I. Manco, E. Benetos, E. Quinton, and G. Fazekas, “Contrastive Audio-Language Learning for Music.” Aug. 25, 2022.

[23] J. Koo, M. A. Martínez-Ramírez, W.-H. Liao, S. Uhlich, K. Lee, and Y. Mitsufuji, “Music Mixing Style Transfer: A

Contrastive Learning Approach to Disentangle Audio Effects.” Nov. 03, 2022.

[24] A. W. Rix, J. G. Beerends, M. P. Hollier, and A. P. Hekstra, “Perceptual evaluation of speech quality (PESQ)-a new

method for speech quality assessment of telephone networks and codecs,” in 2001 IEEE International Conference on

Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221), IEEE, pp. 749–752.

[25] J. Zhao and G. Xia, “AccoMontage: Accompaniment Arrangement via Phrase Selection and Style Transfer.” Aug. 25,

2021.

[26] K. Radzikowski, L. Wang, O. Yoshie, and R. Nowak, “Accent modification for speech recognition of non-native

speakers using neural style transfer,” EURASIP J. Audio, Speech, Music Process., vol. 2021, no. 1, p. 11, Dec. 2021 .

[27] S. Yuan, P. Cheng, R. Zhang, W. Hao, Z. Gan, and L. Carin, “Improving Zero-shot Voice Style Transfer via

Disentangled Representation Learning.” Mar. 16, 2021

[28] Y. Zhang et al., “StyleSinger: Style Transfer for Out-of-Domain Singing Voice Synthesis,” in Proceedings of the

AAAI Conference on Artificial Intelligence, 2024, pp. 19597–19605.

[29] M. Koutsogiannaki, S. M. Dowall, and I. Agiomyrgiannakis, “Gender-ambiguous voice generation through feminine

speaking style transfer in male voices.” Mar. 12, 2024.

[30] M. Pasini, “MelGAN-VC: Voice Conversion and Audio Style Transfer on arbitrarily long samples using

Spectrograms.” Oct. 08, 2019.

https://arxiv.org/abs/1703.10847
https://arxiv.org/abs/1703.10847
https://doi.org/10.1007/978-3-031-18907-4_24
https://doi.org/10.1007/978-3-031-18907-4_24
http://arxiv.org/abs/1809.07600
http://arxiv.org/abs/1809.07600
https://doi.org/10.1109/ICASSP39728.2021.9414235
https://doi.org/10.1109/ICASSP39728.2021.9414235
https://doi.org/10.1109/ICASSP39728.2021.9414235
http://arxiv.org/abs/2105.04090
http://arxiv.org/abs/2105.04090
https://doi.org/10.1109/TASLP.2020.3019642
https://doi.org/10.1109/TASLP.2020.3019642
http://arxiv.org/abs/1905.13567
http://arxiv.org/abs/1905.13567
https://doi.org/10.1038/s41598-023-40332-0
https://doi.org/10.1038/s41598-023-40332-0
https://doi.org/10.1155/2022/5287172
https://doi.org/10.1155/2022/5287172
https://doi.org/10.1109/ICFSP55781.2022.9924773
https://doi.org/10.1109/ICFSP55781.2022.9924773
https://doi.org/10.1145/3422622
http://arxiv.org/abs/2208.12782
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1706.03762
https://doi.org/10.1609/aaai.v37i4.25635
https://doi.org/10.1609/aaai.v37i4.25635
https://doi.org/10.1609/aaai.v37i4.25635
https://doi.org/10.1109/CVPR.2006.100
https://doi.org/10.1109/CVPR.2006.100
https://doi.org/10.1109/CVPR.2006.100
https://doi.org/10.1145/3485447.3512011
https://doi.org/10.1145/3485447.3512011
http://arxiv.org/abs/2208.12208
http://arxiv.org/abs/2211.02247
http://arxiv.org/abs/2211.02247
https://doi.org/10.1109/ICASSP.2001.941023
https://doi.org/10.1109/ICASSP.2001.941023
https://doi.org/10.1109/ICASSP.2001.941023
http://arxiv.org/abs/2108.11213
http://arxiv.org/abs/2108.11213
https://doi.org/10.1186/s13636-021-00199-3
https://doi.org/10.1186/s13636-021-00199-3
http://arxiv.org/abs/2103.09420
http://arxiv.org/abs/2103.09420
https://doi.org/10.1609/aaai.v38i17.29932
https://doi.org/10.1609/aaai.v38i17.29932
http://arxiv.org/abs/2403.07661
http://arxiv.org/abs/2403.07661
http://arxiv.org/abs/1910.03713
http://arxiv.org/abs/1910.03713

