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I. Introduction 

In an information-driven world, a company's technological infrastructure is the core of its daily 
operations and a fundamental pillar for its growth and adaptation to a constantly evolving business 
environment. The Company, aware of this reality, is embarking on a strategic initiative to modernize 
its virtual server infrastructure by implementing Docker technology, a leading solution in 
virtualization at the operating system level. The company’s current infrastructure is heavily reliant on 
VMware virtualization technology. While VMware has provided a robust solution for server 
virtualization, several challenges have emerged over time that are affecting the scalability, operating 
costs, and overall business agility. Here is an overview of these challenges: scalability limitations, 
increasing operating costs, and complexities hindering business agility. Given these challenges, the 
company recognizes the need to transition to a more flexible, scalable, and cost-effective solution. 
Docker-based server virtualization offers a promising alternative, providing lightweight containers 
that can run across various environments with minimal overhead. This transition aims to address the 
limitations of the current VMware infrastructure by offering improved scalability, reduced operating 
costs, and enhanced business agility through streamlined management and deployment processes. 

Neural style transfer techniques were initially developed for image processing, where models 
transfer artistic style from one image to another. Many works have been produced in this domain, 
including ones related to timbre conversion. Timbre or tone colour is the quality of the sound made 
by an object, which allows listeners to distinguish whether two sounds have similar or different sound 
qualities and characteristics. Only musical instruments that can produce harmonious combinations 
have timbre, while objects such as metal rods that only make one sound do not have timbre 
characteristics. 

Music Style Transfer is creating creative music that resembles human work by combining different 
songs' musical content and musical styles. The image style transfer concept explained previously 
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Music style transfer is a technique for creating new music by combining the input 
song's content and the target song's style to have a sound that humans can enjoy. This 
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Based on the results of the trials, it was concluded that the best model in this research 
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greater than or equal to 64, and dropout with a value of 0.1. The results of the ablation 
study show that the best layer configuration consists of 2 Bi-LSTM layers, 1 Attention 
layer, and 2 Dense layers. 
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makes the Music Style Transfer problem interesting to solve. Music Style Transfer focuses on creating 
new music that combines input song content and target song style with human sound characteristics 
so that humans can enjoy it. 

This research uses the Generator-Discriminator model to solve the timbre style transfer, a branch 
of music style transfer. Timbre style transfer is an important topic in music style transfer because it 
transforms sound characteristics from one instrument to another without changing the melody or 
harmony being played. This technology enriches music production by offering an unprecedented 
variety of sounds, allowing producers and musicians to create more innovative and unique works. In 
addition, timbre style transfer also drives the development of machine learning technology in sound 
analysis and synthesis. With the ability to retain a song's essence while changing the sound's 
characteristics, timbre style transfer provides an exciting new dimension in music exploration and 
creation. In this problem, we train a Generator-Discriminator model to change the sound of a musical 
instrument from one song by using the sound of a musical instrument from another. 

Research on neural style transfer was pioneered by Gatys et al. [1], who introduced the concept of 
combining the style and content of two images using a pre-trained CNN model. The emergence of the 
idea of neural style transfer makes similar research in the sound domain, especially music, interesting. 
Several methods have been used, such as GAN-based models. Brunner et al. [2] utilized the 
CycleGAN model to transfer genres to songs by training using a dataset containing songs from the 
Jazz, Classic, and Pop genres in MIDI form. Research utilizing the RaGAN model was conducted by 
Lu et al. [3] by using unsupervised learning techniques. The dataset in research conducted by Lu et al. 
utilizes piano and guitar solo performance videos, which are preprocessed to become mel-
spectrograms. Dong et al. [4] developed the MuseGAN model, a sequential GAN model trained to 
generate multi-track musical compositions, including melody, harmony, and rhythm. This model can 
produce coherent and diverse musical compositions. Yang et al. [5] introduced the MidiNet, a 
Convolutional-GAN-based model designed for creating music with MIDI files. MidiNet models are 
trained using large datasets containing MIDI files to capture complex patterns and structures in music 
and produce enjoyable music. Zaoxu Ding et al., in their research [6], propose a method called 
SteelyGAN, a music genre transfer model that uses GANs to transfer musical style at both pixels on 
piano rolls and latent levels. 

Besides GANs, autoencoder models are also effective for performing timbre style transfer. Brunner 
et al. [7] introduced the MIDI-VAE, a Variational Autoencoder-based model capable of handling 
polyphonic music. Brunner et al. show that the MIDI-VAE model can transfer styles to symbolic 
music and automatically change the pitch, dynamics, and instruments from classical music to jazz 
music. Cifka et al. [8] developed a VQ-VAE model trained with self-supervised learning techniques 
to obtain separate representations of timbre and pitch. Research by Cifka et al. using Lakh MIDI 
Dataset and RealTrack datasets, which are preprocessed in such a way that they are in STFT form. 
Wu et al. [9] utilise a VAE model combined with a Transformer called MuseMorphose. Wu’s research 
focuses on transferring style to produce pop piano music. Cifka et al. [10] presented a one-shot style 
transfer method for accompaniment styles in the symbolic music domain called Groove2Groove, 
based on AutoEncoder. Cifka’s research focuses on the case of accompaniment styles in popular music 
and jazz. Hung et al. [11] used an autoencoder-based model that can take a piece of music and make 
it sound like it was played in a different style, focusing on changing the instrument's sound quality 
without changing the core tone. Hung's research used the MedleyDB+Mixing Secret and MuseScore 
datasets. 

This research has several similarities and differences with the previous studies that have been 
described. This research and the research conducted by Lu et al. [3] utilized the mel-spectrogram data 
representation and the GAN model to perform music style transfer. The mel-spectrogram is a form of 
spectrogram that uses mel-scale to represent the shape of the waveform of an audio signal, which can 
capture the time and frequency information of the signal in a concise and informative manner, making 
it suitable for music-style transfer tasks. Besides mel-spectrograms, many other studies use MIDI data 
representations, such as Brunner et al. [2], Yang et al. [5], Cifka et al. [8], etc. Lu et al. use the RaGAN 
(Relativistic average GAN) model, which differs from traditional GANs by making the discriminator 
predict relative authenticity, i.e., whether a given real data example is more realistic than artificial 
data. This relativistic approach aims to stabilize the training and produce higher-quality output. In 
contrast, this study uses the standard GAN model, which focuses on generating timbre-transferred 
songs by optimizing the generator to produce mel-spectrograms that capture the target style and retain 
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the original content. In terms of loss function, this study uses BCE Loss as adversarial loss and 
Contrastive Loss as reconstruction loss in the training phase. Lu et al. [3] use Chi-Square Loss as 
adversarial loss and to count the reconstruction loss as in (1). 

𝐿𝑟𝑒𝑐 =  𝐿𝑟𝑒𝑐
𝑥 + 𝐿𝑟𝑒𝑐

𝑦
= |𝑥 − 𝑥̂|1 + |𝑦 − 𝑦̂|1  () 

Where 𝑥 and 𝑦̂Are the reconstructed features of 𝑥 and 𝑦respectively. This study focuses on musical 
timbre style transfer, where the main goal is to combine the musical content and musical style of the 
sounds of different instruments in 2 songs with the same melody by utilizing the standard GAN model. 
This research focuses on two musical instruments: piano and guitar. 

 This paper presents a novel Generator-Discriminator model for timbre-style transfer, 
advancing the current state of research in this domain. The model is rigorously validated through 
comprehensive testing methodologies, including ablation studies, hyperparameter tuning, input 
dimension assessments, evaluations using slower-tempo songs, and performance analysis of the 
discriminator using a threshold-based approach. Additionally, contrastive learning techniques are 
employed, specifically utilizing the Contrastive Loss Function, to enhance the training efficacy of the 
generator model. This multi-faceted approach demonstrates the robustness of the model and 
establishes its effectiveness in achieving superior timbre style transfer outcomes, underscoring the 
innovative contributions of this research. 

II. Methods  

This section will discuss the system created, starting from the dataset model architecture and the 
input and output. 

A. Dataset 

The dataset used in this research is the MAESTRO (MIDI and Audio Edited for Synchronous 
Tracks and Organization) dataset. This dataset is a collection of audio created by PG Music and 
available for download from Magenta. MAESTRO consists of approximately 200 hours of piano 
performance aligned with notation labels and audio waves. MAESTRO dataset has been used in 
several studies, such as Somrudee D. et al. [12], Xiaomei X. et al. [13], and Donelly P. et al. [14]. Two 
datasets are provided, namely datasets in .wav and. midi formats. However, because the size of the 
.wav dataset is large (120GB), we used a smaller one- the Midi dataset at 81MB. Datasets consist of 
a folder containing several MIDI files and a .csv file containing data from all MIDI files. There are 
1276 MIDI files with Grand Piano sounds collected from 10 years of competition implementation 
International Piano-e-Competition (2004, 2006, 2008, 2009, 2011, 2013, 2014, 2015, 2017, 2018). 
Because using MIDI format, all songs in this dataset only have the sound of a piano musical instrument 
and no noise. A limitation of this dataset is that it includes only piano sounds. To meet the needs of 
this research, we had to convert the piano sounds to guitar using a MIDI editor application. In addition, 
adding other datasets to this research could help generalize the data further. However, this research 
focuses exclusively on using the MAESTRO dataset. 

Pre-processing is an essential technique for preparing a dataset to ensure that incoming data is 
clean and usable. In this research, six pre-processing stages were conducted to ready the dataset for 
input into the model. The first stage, Song Selection, involved choosing songs from the MAESTRO 
dataset, which contains 1,276 songs. Due to the large number, a subset with a total duration of 445 
minutes was selected based on criteria such as appropriate length, minimal staccato technique usage, 
and clear audibility. The second stage, Convert Piano Files to Guitar Files, used the MidiEditor 
application to change the sound from a grand piano to an acoustic guitar, retaining the same musical 
tones but altering the instrument's sound for the training process.  

Next, Convert File Format was carried out to convert the MIDI files into .mp3 format, enabling 
them to be processed using the Librosa library. In the fourth stage, Loading MP3 into STFT, the .mp3 
files were loaded into the Python program using the Librosa library's `librosa.load()` function, 
resulting in the song's Short-Time Fourier Transform (STFT) signal and sample rate. The fifth stage, 
STFT to Mel-Spectrogram, converted the STFT signal into a Mel-spectrogram using the 
`librosa.feature.melspectrogram()` function, creating a matrix with dimensions of 128 by the length 
of the song. Finally, in the Matrix to Vector stage, the Mel-spectrogram matrix (128 columns by song 
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length) was converted into a vector with a size of 1 by 128, simplifying the input for machine learning 
models by reducing it to a single dimension for easier processing. 

B. Model Architecture 

The primary model in this research is the Generator-Discriminator model [15]. The generator-
discriminator architecture consists of several parts. The flow of this architecture begins with the 
dataset preprocessing stage, followed by data processing in the generator and discriminator models. 
Finally, the predicted data will be passed through the postprocessing stage until it becomes an output 
that humans can enjoy. An image of the generator-discriminator architecture can be seen in Figure 1. 

 

 

Fig. 1.  Generator-discriminator architecture 

The Generator Model creates a new version of an entered song by changing the musical 
instruments used in the song. For example, when a song is played on a piano, the generator will 
produce a version of the music played on a guitar and vice versa. The quality of the generator model 
can be measured from the output produced, which can deceive the discriminator model so that the 
discriminator model will assume that the output from the generator is original data. The generator 
architecture diagram can be seen in Figure 2. 

 

Fig. 2. Generator model architecture 

The generator takes one type of input and produces one kind of output. The input is in the form of 
a .mp3 file preprocessed to produce mel-spectrogram column vectors. We use mel-spectrogram 
because mel-spectrogram is one of the most popular in sound representation, as seen in many studies 
such as Lu et al. [3] and Giorgi et al. [16]. This input goes through several machine-learning layers in 
the model. First, the input will be entered into the Bidirectional Long Short-Term Memory (Bi-LSTM) 
layer [17] to capture context information from both directions and understand the global context of 
the input data. The output from Bi-LSTM is then fed into the Attention model [18] for focusing on 
relevant context to improve model performance. This attention mechanism is also found in studies 
such as Cifka O. [10] and Guo Z. et al. [19]. The type of attention layer used is simple attention, also 
called global attention. Simple attention is a mechanism used in natural language processing to 
emphasize input elements based on their relevance to a particular target or focus element. Simple 
attention allows the model to calculate complex relationships between each pair of words in a sentence 
without regard to the order of the words. Attention weights are given to input elements based on their 
relevance to the target element being processed in simple attention. In simple attention, three 
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calculations are carried out, namely calculating the similarity score, attention score, and the new 
form/representation after passing through the attention layer as in (2) to (4). 

𝑤𝑒𝑖𝑔ℎ𝑡 ∗ 𝑖𝑛𝑝𝑢𝑡𝑡 = 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑠𝑐𝑜𝑟𝑒  () 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑠𝑐𝑜𝑟𝑒) = 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑠𝑐𝑜𝑟𝑒  () 

𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑠𝑐𝑜𝑟𝑒 ∗ 𝑖𝑛𝑝𝑢𝑡 = 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑛𝑒𝑤  () 

The Attention model's output is fed into another Bi-LSTM layer to enhance learning. The output 
from the second Bi-LSTM is then passed to a dense layer, producing a vector that has undergone 
timbre style transfer. For instance, if the input sounds like a piano, the output sounds like a guitar, and 
vice versa.  

The generator’s predicted vector output is evaluated using the Contrastive Loss function [20] and 
Binary Cross-Entropy Loss (BCE Loss). Contrastive Loss minimizes the distance between inputs that 
should be similar and maximizes the distance between inputs that should be different. There have been 
many studies that apply contrastive loss to perform contrastive learning in this domain, such as Dong 
et al. [21], Manco et al. [22], and Koo et al. [23]. The concept is based on calculating the distance 
between the model output and the target data using Euclidean distance. Contrastive Loss is calculated 
for each pair of input vectors x1 and x2 with a binary label y indicating whether the pair is similar or 
different. Contrastive loss is calculated as in (5). 

𝐶𝑜𝑛𝑡𝑟𝑎𝑛𝑠𝑡𝑖𝑣𝑒𝑙𝑜𝑠𝑠 = (1 − 𝑦) ∗ 𝑑2 + 𝑦 ∗ max(𝛼 − 𝑑, 0)2  () 

BCE Loss is a loss function commonly used in binary classification problems, where the goal is to 
predict a binary output (0 or 1) based on input data. This function measures the difference between 
the label predicted by the discriminator model and the natural data labels. The smaller the BCE Loss 
value, the better the output produced by the generator because the discriminator assumes that the 
production is the actual data. Calculations for BCE Loss utilize the model output probability values 
and perform log-transformation of these probabilities to avoid infinite values. The smaller the value 
of BCE Loss, the closer the predicted results are to the actual label. BCE Loss can be calculated as in 
(6). 

  () 

The discriminator model is responsible for evaluating whether the output produced by the 
generator model is natural or synthetic data. If the generator model is good enough, the discriminator 
model will be fooled and incorrectly assume that the output produced by the generator model is 
accurate data. However, because the discriminator model is trained together with the generator model, 
the discriminator model is not that easy to fool. As the training progresses, the discriminator model 
will become more competent in distinguishing between natural and synthetic data. The discriminator 
model architecture diagram can be seen in Figure 3. 

 

Fig. 3. Discriminator model architecture 
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The discriminator architecture has two types of input during the training process, which will be 
explained in the input and output sections. The discriminator model processes these two input types 
through a dense layer and a sigmoid activation function to produce output with a value range of 0 to 
1. The output produced by this model is only one, the real/fake label, which has a value range of 0 to 
1. The closer the value is to 0, the more confident the model is that the input provided is the output of 
the generator model or synthetic data, while the closer the value is to 1, the model is more confident 
that the feedback provided is the original data. The prediction results from the discriminator model 
were evaluated using the BCE Loss function described previously. The training process for the piano-
to-guitar model proposed is in Pseudocode 1. 
 

PSEUDOCODE 1. Training process for the piano-to-guitar model proposed 

BEGIN 

For each epoch DO 

    For each batch(piano, guitar) DO 

        SET real_data TO piano 

        SET real_labels TO tensor of ones with shape (batch_size, 1) 

        SET fake_data TO generator(guitar) // generate an initial fake data 

        SET fake_labels TO tensor of zeros with shape (batch_size, 1) 

 

        // Train discriminator 

        CALL discriminator.zero_grad() 

 

        SET real_outputs TO discriminator(real_data) // evaluate the real data 

        SET real_loss TO criterion_real_D(real_outputs.to(device), 

real_labels.to(device)) 

        CALL real_loss.backward() 

 

        SET fake_outputs TO discriminator(fake_data.detach()) // evaluate the 

fake data 

        SET fake_loss TO criterion_fake_D(fake_outputs.to(device), 

fake_labels.to(device)) 

        CALL fake_loss.backward() 

 

        CALL optimizer_D.step() 

 

        // Train generator 

        CALL generator.zero_grad() 

 

        SET g_outputs TO generator(piano) // generator model called to generate 

new data 

        SET d_outputs TO discriminator(g_outputs) // evaluate generator output 

        SET g_loss_adv TO criterion_G_adv(d_outputs.to(device), 

real_labels.to(device)) 

        SET g_loss_rec TO criterion_G_rec(g_outputs, guitar) 

        SET g_loss TO g_loss_adv + g_loss_rec 

        CALL g_loss.backward() 

        CALL optimizer_G.step() 

    END LOOP 

 

    CALL scheduler_G.step() // learning rate scheduler works here 

END LOOP 

END 

 
Pseudocode 1 is outlining the training process for the piano-to-guitar model proposed over a series 

of epochs, where each process processes multiple data batches. For each epoch, the code iterates 
through batches of data consisting of piano and guitar. The data is initially set to piano, and real labels 
are initialized to a tensor of ones. Fake data is generated by passing the guitar through the generator 
model, and fake labels are initialized to a tensor of zeros. The training process begins with the 
discriminator. The discriminator's gradients are reset to zero, and then it evaluates the actual data to 
produce real_outputs. The loss for the actual data is computed using the BCE Loss, which compares 
real_outputs to the actual labels. This loss is then backpropagated. Next, the discriminator evaluates 
the fake data (with gradients detached to prevent updating the generator during this step) to produce 
fake_outputs. The loss of the fake data is also computed using the BCE LOSS, which compares 
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fake_outputs to the fake labels. This loss is also backpropagated. The discriminator's parameters are 
then updated. 

Following the discriminator training, the generator is trained. The generator's gradients are reset to 
zero, and it generates new data by processing the piano song. The discriminator evaluates this 
generated data. The adversarial loss is computed using BCE Loss, comparing d_outputs to the actual 
labels, encouraging the generator to produce more realistic data. Additionally, a reconstruction loss is 
calculated using Contrastive Loss, comparing g_outputs to the guitar, enabling the generator to 
produce data structurally like a guitar. The total generator loss (g_loss) is the sum of the adversarial 
and reconstruction losses and is backpropagated. The generator's parameters are then updated using 
Stochastic Gradient Descent (SGD). After processing all batches in an epoch, the learning rate 
scheduler updates the learning rate to ensure the training process adjusts dynamically. This entire 
process repeats for each epoch until the training is complete. 

C. Input and Output 

During training, the model receives piano and guitar songs as mel-spectrogram. The mel-
spectrogram matrix is then transposed to produce a matrix with the size of (column, row). The 
generator model receives input as a mel-spectrogram matrix, cut into a vector measuring 1 x 128, with 
128 columns. One song is input to the generator for timbre style transfer, while the other serves as a 
target for evaluation. The discriminator receives the generator's output during training, distinguishing 
between fake (generator output) and actual (original song) inputs. During testing, the generator 
processes the input song alone. For an entire song with a 100 x 128 mel-spectrogram, the model 
receives 100 input vectors of 1 x 128. 

Because two models are used, namely the generator model and the discriminator model, the output 
of each model is different according to its role in the system. The generator model produces output as 
a vector of timbre-style transfer results. In contrast, the discriminator model produces output from 
real/fake labels to evaluate the generator results. All generator prediction results are formed into a list 
of vectors or matrices and then transposed to produce a mel-spectrogram with dimensions (rows, 
columns). Mel-spectrogram then goes through a post-processing stage to make a .mp3 file. 

III. Results and Discussion 

Optimizing Docker environments can significantly improve application performance, resource 
utilization, and operational efficiency. Below, we detail Docker optimization’s potential results and 
benefits across different dimensions. 

Testing will be carried out using 6 test scenarios: ablation study, effect of hyperparameters, effect 
of input dimensions, test with slow tempo songs, and threshold test on the discriminator. Each 
experiment was carried out using ten epochs of the training process. Each trial result data will be 
equipped with a table to make it easier to understand the results. The information in the form of tables 
is hoped to increase understanding of the results of experiments on the trained, intelligent machine 
models.  

As previously discussed in the Model Architecture section, the training loss and validation loss 
values in this test are calculated using the Contrastive Loss combined with the BCE Loss metrics. 
These two-loss metrics were selected for their specific benefits: we chose Contrastive Loss to focus 
on the similarity between the waveform of the output generated by the generator and the label/target 
data, ensuring that similar timbres are closely aligned while distinct timbres remain separated. 
Additionally, BCE Loss (Binary Cross-Entropy Loss) is used to evaluate whether the output of the 
generator resembles the original data or is still considered artificial by the discriminator, as BCE Loss 
is well-suited for optimizing the discriminator's performance in distinguishing between actual and 
generated samples. 

The loss values used in the testing process, including hyperparameter tuning, the effect of the input 
dimension, and tests for songs with a slower tempo, are obtained using the PESQ and MSE metrics. 
The PESQ (Perceptual Evaluation of Speech Quality) metric was chosen for its ability to evaluate 
sound quality, allowing us to assess the clarity of the sound produced by the generator and identify 
any noise present. Meanwhile, we chose the MSE (Mean Squared Error) metric to evaluate the 
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accuracy of the waveform produced by the generator in comparison to the target data, providing a 
measure of the overall difference between the generated output and the desired result. 

A. Ablation Study 

The Ablation Study aims to identify each component's relative contribution and determine which 
elements most influence model performance. This research will test ten models and observe the 
resulting loss values. The model with the lowest loss value is used as the primary model. The value 
that will be observed is the loss value from each experiment. Detailed results of the ablation study trial 
are shown in Table 1. 

Table 1.  Test results on the ablation study 

Model 
Piano to Guitar Guitar to Piano 

Training Loss Validation Loss Training Loss Validation Loss 

Default 52.061 60.045 416.739 746.695 

Dense Layer + ReLU 52.523 62.298 493.462 829.131 
Bi-LSTM to LSTM 53.61 58.227 518.731 794.879 

No Attention Layer 53.999 59.822 526.079 825.763 

3 Dense Layer 54.836 62.28 569.896 854.622 

1 Dense Layer 62.149 63.644 642.856 888.964 
3 Bi-LSTM 64.059 69.955 556.587 885.357 

Added Conv1D 66.139 69.041 1681.598 1992.078 

Conv1D Without Attention 61.54 83.244 1766.178 2105.699 

Conv1D + MaxPooling 72.019 78.74 2564.744 3008.396 

  
In Table 1, experiments have been carried out with ten types of models. These ten models were 

trained using the same number of epochs, batch size, and learning rate. The default model is the model 
described in the Generator-Discriminator Architecture section. Meanwhile, other models are produced 
by adding or subtracting layers from the model. The following is a discussion of each model tested: 

• Default Model: The best model tested is the default model because it has the lowest training 
loss and validation loss of the other nine models, the piano-to-guitar model obtained a training 
and validation loss of 52.061 and 6 0.045. In contrast, the guitar to the piano model resulted in 
a training and validation loss of training and validation loss of 416.739 and 746.695, 
respectively. The configuration for this model is Bi-LSTM->Attention->Bi-LSTM->Dense-
>Dense. 

• Using ReLU: Adding the ReLU activation function to 2 dense layers in the model produces a 
loss value that is slightly larger than the default model. Because it produces unsatisfactory 
performance, the ReLU activation function is not used. The configuration for this model is Bi-
LSTM->Attention->Bi-LSTM->ReLU(Dense)->ReLU(Dense). 

• Replacing Bi-LSTM with LSTM: Replacing the Bi-LSTM layer with a regular LSTM aimed 
to test whether bidirectional processing was necessary. Results showed that Bi-LSTM produced 
smaller loss values, with training and validation losses for the guitar-to-piano model being 
much higher than those for the primary model. Therefore, the main model uses Bi-LSTM 
layers. The configuration for this model is LSTM->Attention->LSTM->Dense->Dense. 

• Removal of the Attention Layer: The following test involved removing the attention layer. This 
test aimed to see the impact of using the attention layer. The increase in loss value from the 
previous model shows that the attention layer plays an essential role in the primary model, so 
this layer is used in the main model. The configuration for this model is Bi-LSTM->Bi-LSTM 
->Dense->Dense. 

• Using 3 Dense Layers: Adding one dense layer to the primary model gives it three thick layers. 
This layer's addition produces unsatisfactory results because it produces a higher loss value. 
Increasing the loss value of the default model concludes that too many dense layers are 
unsuitable for the model. The configuration for this model is Bi-LSTM->Attention->Bi-LSTM-
>Dense->Dense->Dense. 

• Using 1 Dense Layer: After it was discovered that too many dense layers resulted in more 
significant loss, the next try was to reduce the number of dense layers by one so that the model 
only had one dense layer. Reducing the number of dense layers also does not provide better 
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results because the resulting loss value is more significant. Increasing training loss significantly 
means that too few dense layers are not good, so two dense layers are used. The configuration 
for this model is Bi-LSTM->Attention->Bi-LSTM->Dense. 

• Using 3 Bi-LSTM Layers: Recognizing the importance of Bi-LSTM, an additional Bi-LSTM 
layer was tested after the second one. Despite decreased training loss for the guitar-to-piano 
model, both models showed increased validation loss, indicating overfitting. Thus, the primary 
model uses only 2 Bi-LSTM layers. The configuration for this model is Bi-LSTM->Bi-LSTM-
>Attention->Bi-LSTM->Dense->Dense. 

• Addition of 1 Conv1D Layer: In this experiment, a Conv1D layer was added to the part before 
the first Bi-LSTM. The increase in loss value reached 2-3 times. In this way, it can be concluded 
that the Conv1D layer is unsuitable. The configuration for this model is Conv1D->Bi-LSTM-
>Attention->Bi-LSTM->Dense->Dense. 

• Use of 1 Conv1D Layer and Removal of the Attention Layer: Curiosity about the previous 
model's significant loss value increase led to the next experiment, which involved removing the 
attention layer to see if it was incompatible with the Conv1D layer. While the guitar-to-piano 
model initially showed the increase, this time, the piano-to-guitar model did. This confirms that 
the attention layer is essential and cannot be removed. The configuration for this model is 
Conv1D->Bi-LSTM->Bi-LSTM->Dense->Dense. 

• Use of 1 Conv1D Layer accompanied by MaxPooling: The final experiment used 1 Conv1D 
layer with a MaxPooling layer, resulting in a significant loss value increase for the guitar-to-
piano model. This suggests that MaxPooling caused a loss of important information, leading to 
its exclusion. Since none of the Conv1D layer experiments were satisfactory, it was decided to 
discontinue using this layer type. The configuration for this model is MaxPooling(Conv1D)-
>Bi-LSTM->Attention->Bi-LSTM->Dense->Dense. 

Of the ten model configurations tested, the default model, which is the primary model in this study, 
gave the best results. Full details about this default model configuration can be found in the model 
architecture section. The default model performed better than the other nine configurations. Regarding 
training loss, the default model outperformed all nine other model configurations. The default model 
outperformed the guitar-to-piano model for validation loss but was lost to the Bi-LSTM model 
configuration, which was transformed into LSTM on the piano-to-guitar model.  

In this ablation study, several conclusions can be drawn. First, using Bi-LSTM results in a lower 
loss value than LSTM due to Bi-LSTM's ability to capture information from both directions of the 
sequence. Layer Attention is also needed to highlight the important part of the feature sequence 
generated by Bi-LSTM. The best number of layers for the Dense layer is 2, as too many/too few dense 
layers result in higher loss. Using too many Bi-LSTMs also causes a high loss value due to the 
overfitting factor. Lastly, the Conv1D layer and the MaxPooling and ReLU activation functions are 
unsuitable for this task. 

From the mentioned conclusion, it is known that the configuration of 2 Bi-LSTM, 1 Attention, and 
2 Dense Layer (Bi-LSTM->Attention->Bi-LSTM->Dense->Dense) is the best in this task. Each layer 
in the configuration has its own role, as follows: 

• Bi-LSTM (First): This technique captures the temporal patterns and features of the input mel-
spectrogram by accessing information from both directions of the sequence. 

• Attention: Highlights the essential part of the feature sequence generated by the first Bi-LSTM, 
helping the model to focus on the most relevant information. 

• Bi-LSTM (Second): This process further processes the information highlighted by Attention, 
improving the temporal context representation. 

• Dense (First): Transforms the representation obtained from the second Bi-LSTM into a more 
compact form suitable for the next step. 

• Dense (Second) refines the output of the first dense layer into a final representation best suited 
for the target timbre. 
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B. Affect of Hyperparameter 

This subchapter discusses the experimental results by utilizing the best model from the 
experimental results in the ablation study to be trained using various hyperparameters. The goal is to 
find the best hyperparameters for the primary model. The hyperparameters that will be tested are 
learning rate, dropout, and batch size. The value that will be observed is the loss value from each 
experiment. In selecting values for the tested hyperparameters, we first tested various values 
randomly. Next, we selected some values with significant distances to observe the difference in the 
resulting loss. The trial compared four learning rates: 0.01, 0.005, 0.001, and 0.0005 as in Table 2. 

Table 2.  Test results on the effect of learning rate 

Learning Rate 
Piano to Guitar Guitar to Piano 

Training Loss Validation Loss Training Loss Validation Loss 

0.01 NaN NaN NaN NaN 

0.005 78.003 83.253 NaN NaN 
0.001 58.561 66.126 937.193 1303.798 

0.0005 57.469 64.055 861.191 1159.181 

 

From Table 2, the smaller the learning rate, the more stable the training process. This can be seen 
from the learning rate 0.01 caused by NaN (Not a Number) or infinity losses due to instability (losses 
fluctuate). Conversely, rates that were too small hindered learning progress. From the experiments 
that have been carried out, it can be concluded that the ideal learning rate is 0.0005. However, at some 
point, the model will usually experience convergence. Therefore, it is a good idea to implement a 
learning rate scheduler (e.g., reducing the rate by 0.5 every few epochs) to help manage convergence. 
Next is a test of the effect of dropouts shows in Table 3. 

Table 3.  Test results on the effect of dropout 

Dropout 
Piano to Guitar Guitar to Piano 

Training Loss Validation Loss Training Loss Validation Loss 

0.1 57.509 66.327 848.842 1110.385 
0.3 60.131 63.589 919.171 1186.996 

0.5 62.083 63.897 960.628 1182.089 

 

In this trial, three dropout values were compared, namely 0.1, 0.3, and 0.5. From Table 3, the 
results shows that higher dropout values led to more significant losses due to fewer model parameters. 
This is caused by reducing the number of model parameters trained by the dropout value. Dropout is 
used to prevent overfitting. The best dropout value from these tests is 0.1, yielding the lowest loss 
(57.509 for training and 66.327 for validation) compared to 0.3 and 0.5. In the batch size trial, 16, 32, 
and 64 batch sizes were compared like in Table 4. 

Table 4.  Test results on the effect of batch size 

Batch Size 
Piano to Guitar Guitar to Piano 

Time Each Epoch 
Training Loss Validation Loss Training Loss Validation Loss 

16 62.966 71.714 1094.137 1515.173 2:14 
32 58.929 65.918 962.214 1345.849 1:22 

64 56.394 63.31 844.255 1140.588 0:54 

 

Table 4 shows that the larger batch sizes for this study result in smaller training and validation 
losses. Batch size 64 produces the lowest training and validation loss for the piano-to-guitar model: 
56.394 (training) and 63.31 (validation), while the guitar-to-piano model: 844.255 (training) and 
1140.588 (validation). However, substantial batch sizes can increase losses due to limited evaluation 
time per data batch. Meanwhile, the smaller the batch size, the longer it takes to complete one epoch. 
Smaller batch sizes lead to longer epochs but more frequent evaluations. Batch size 64 performed best 
in speed and losses, taking 54 seconds per epoch. 

C. Affect of Input Dimension 

In this experiment, the input consists of a 1-dimensional array (column vector) and a 2-dimensional 
array (matrix) representing the power mel-spectrogram. Both test scenarios will utilize the Contrastive 
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Loss, MSE Loss, and PESQ [24] metrics to evaluate model performance. The Contrastive Loss metric 
is used during training, while MSE Loss and PESQ are used to assess the model prediction results at 
the testing stage. Table 5 shows the test results using dimension one input (column vector). 

Table 5.  Test results on one dimension input (vector) 

Model Train Loss Valid Loss PESQ 
MSE 

With Target With Input 

Piano to Guitar 52.061 60.045 1.096   
Guitar to Piano 416.739 746.695 1.1   

     
From Table 5, the piano-to-guitar model had a training and validation loss of 51.061 and 60.045, 

while the guitar-to-piano model lost 416.739 and 746.695, respectively. The PESQ value of the guitar-
to-piano model (1.1) is slightly higher than the piano-to-guitar model (1.096), indicating that the sound 
produced by the guitar-to-piano model is more precise. However, the Mean Squared Error (MSE) 
value of the piano-to-guitar model is lower than that of the guitar-to-piano model. The MSE value of 
the prediction results of the piano-to-guitar model is 3.201 ∗ 10−3 with the target (guitar sound) and 

4.931 ∗ 10−3with the input (piano sound). For the prediction results of the guitar-to-piano model, the 
MSE value is 7.432 ∗ 10−3 with the target (piano sound) and 5.713 ∗ 10−3with the input (guitar 
sound). A low MSE value indicates that the prediction results are close to the expected results. 
However, for the guitar-to-piano model, the prediction results are still more like the input than the 
target. Therefore, a longer training process is required. The waveform predicted by the model with 
column vector input can be seen in Figure 4 and Figure 5. 

 

Fig. 4. Prediction results of piano to guitar model with vector input 

 

Fig. 5. Prediction results of guitar to piano model with vector input 

Table 6.  Test results on two dimension input (matrix) 

Model Train Loss Valid Loss PESQ 
MSE 

With Target With Input 

Piano to Guitar 512.168 425.389 1.112   
Guitar to Piano 7338.361 8266.958 1.15   

 
In the second trial using 2-dimensional input or a matrix, Table 6 indicates higher losses than 

column vector input. The piano-to-guitar model had training and validation losses of 512.168 and 
425.389. Meanwhile, the guitar-to-piano model had losses of 7338.361 and 8266.958, respectively. 
This higher loss is due to processing more elements with the 2D matrix. The PESQ values for the 
piano-to-guitar and guitar-to-piano models are 1.112 and 1.15, respectively. The MSE value of the 
prediction results in the two models was also checked for the input and target. The prediction results 
of the piano-to-guitar model produce MSE values equal. 1.625 ∗ 10−3 to the target (guitar sound) and 

3.347 ∗ 10−3To the input (piano sound). Meanwhile, the prediction results of the guitar-to-piano 
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model produce MSE values of 4.813 ∗ 10−3 to the target (piano sound) and 3.089 ∗ 10−3To the input 
(guitar sound). The waveform predicted by the model with matrix input can be seen in Figure 6 and 
Figure 7. 

 

Fig. 6. Prediction results of piano to guitar model with matrix input 

 

Fig. 7. Prediction results of guitar to piano model with matrix input 

The MSE value of the model with matrix input is lower than the model with column vector input, 
presumably because the prediction results of the model with matrix input have more stable 
characteristics. In contrast, the prediction results of the model with vector input tend to be more varied 
with increasing and decreasing amplitudes. These amplitude variations can cause an increase in error 
values when the amplitude is too high or too low. For comparison, the wave shape of the original song 
can be seen in Figure 8 and Figure 9. 

 

Fig. 8. Original song wave shape with piano sounds 

  

Fig. 9. Original song wave shape with guitar sounds 

D. Test for Song with a Slower Tempo 

This subchapter discusses the generator model's performance in handling the same song at a slower 
tempo. Songs with a slower tempo were changed to 0.75 times the speed of the original song. Five 
song samples were used in this trial for each model. Two metrics, PESQ and MSE, will be used to 
evaluate the results of the two songs. Table 7 shows the PESQ scores for songs tested with both trained 
models. 
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Table 7.  Test results for song with a slower tempo (PESQ) 

Model Sample PESQ 

Sample Song Slower Song 

Piano to Guitar 

1 1.155 1.075 
2 1.074 1.023 

3 1.128 1.034 

4 1.097 1.027 

5 1.086 1.094 

Guitar to Piano 

1 1.134 1.019 

2 1.1 1.036 

3 1.599 1.032 

4 1.199 1.025 
5 1.151 1.019 

 
From Table 7, in the piano-to-guitar model, the original samples generally had higher PESQ scores, 

except for the 5th sample, where the slower song scored higher. The most considerable PESQ score 
difference was 0.094 in sample 3, and the smallest was 0.0085 in sample 5. Conversely, the guitar-to-
piano model consistently favored original samples, with the most significant difference of 0.567 in 
sample 3 and the smallest of 0.064 in sample 2. Table 8 shows the test results for song with a slower 
tempo (MSE). 

Table 8.  Test results for song with a slower tempo (MSE) 

Model Sample MSE 

Sample Song Slower Song 

Piano to Guitar 

1   
2   
3   
4   
5   

Guitar to Piano 

1   
2   
3   
4   
5   

 
From Table 8, the MSE values obtained by the two piano-to-guitar and guitar-to-piano models for 

original and slow songs. This suggests that the results from the slower songs were more like the target. 
Overall, the MSE value of the original song is lower than the MSE value of the slower song. For the 
piano to guitar model, the range of MSE difference values ranges from 1.598 ∗ 10−3 (sample 5) to 

3.334 ∗ 10−3 (sample 4). Meanwhile, in the guitar-to-piano model, the range of MSE difference 
values ranges from 4.388 ∗ 10−3 (sample 5) to 9.104 ∗ 10−2 (sample 4). 

Overall, it can be concluded that the model can handle songs with both original and slower tempos. 
This is shown by the PESQ and MSE scores, which are not too far apart between the two types of 
songs. This shows the model's ability to maintain the quality and suitability of timbre in songs that 
have changed the tempo. Thus, the model generally produces quality output, regardless of the tempo 
changes applied. 

E. Threshold Test on Discriminator 

In this section, we explain the performance of the discriminator trained to evaluate the generator's 
output. The approach is to count the number of discriminator predictions that produce values below a 
threshold and divide these results by the total test data. Several thresholds have been tested, namely 
0.5, 0.1, 0.05, 0.01, and 0.005. 

Table 9 displays scores from the piano-to-guitar and guitar-to-piano models based on different 
threshold values. Scores at thresholds 0.5, 0.1, and 0.05 were not notably significant. For the piano-
to-guitar model, scores of 0.5, 0.1, and 0.005 were 0.997, 0.985, and 0.971, respectively. The guitar-
to-piano model scored 0.9994, 0.996, and 0.993 at these thresholds. A notable score difference 
appeared at a threshold of 0.01: the piano-to-guitar model scored 0.858, while the guitar-to-piano 
model scored 0.952. At 0.005, the piano-to-guitar model scored 0.782, and the guitar-to-piano model 
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scored 0.931. This indicates the discriminator's strong ability to evaluate the generator's results, with 
minimal confusion even at shallow threshold values, resulting in relatively high scores. 

Table 9.  Threshold test result on discriminator 

Model Threshold Score 

Piano to Guitar 

0.5 0.997 

0.1 0.985 
0.05 0.971 

0.01 0.858 

0.005 0.782 

Guitar to Piano 

0.5 0.999 
0.1 0.996 

0.05 0.993 

0.01 0.952 

0.005 0.931 

 

F. Implication and Contribution in Real Life 

The timbre style transfer technique opens new opportunities for exploration and creativity in music 
production. With the development of this technique, music producers are expected to dig deeper into 
their creativity, producing unique songs with unusual instrument sounds. For example, a solo guitar 
performance played with piano sounds, or a classical piano composition played with guitar sounds. 
This technology enables a blend of styles and sounds that have never been heard before, giving a new 
dimension to music creation. In addition to contributing to the development of science in the music 
domain, this research is also expected to encourage the interest of researchers to develop it in other 
domains such as photography, design, etc. 

In machine learning, this research can potentially encourage the development of more efficient and 
accurate models for handling sound data, especially in music. With this research, it is expected that 
there will be more and more exciting adoptions of similar techniques in the future, such as the creation 
of digital musical instruments that can mimic various timbres in real-time, the development of 
applications that can automatically change the style and characteristics of sound in musical 
compositions, and improvements in voice recognition technology and more natural and detailed voice 
synthesis. 

Several real-life adaptations are based on neural style transfer techniques, such as the one used in 
this research. Zhao et al. [25] developed a model that focuses on creating musical accompaniments 
that match a given melody. This model helps musicians or music producers generate background 
music (such as chords, basslines, or drum patterns) that match the style and mood of a song. 
Radzikowski et al. [26] developed an autoencoder model and CNN to perform accent modification on 
speech audio. The dataset used contains English sentences spoken by Japanese people, namely the 
UME-ERJ dataset. Yuan et al. [27] utilized the VCTK dataset and autoencoder model to perform style 
transfer on human voices. This paper focuses on making it easier for computers to change how 
someone sounds (in terms of style), even if the computer has never heard that style before. It does this 
by teaching the computer to understand and separate the different parts of a voice to mix and match 
them more effectively. Zhang et al. [28] developed a model to generate high-quality singing voices 
with invisible styles, such as unique voice color, emotion, pronunciation, and articulation ability. 
Koutsogiannaki et al. [29] developed a way to make male voices sound more gender-ambiguous by 
borrowing certain speaking styles usually associated with female voices. The goal was to produce a 
voice that did not sound male or female but somewhere between. Marco Pasini [30] developed a 
MelGAN-VC model that focuses on converting one person's voice to sound like another person's voice 
and transferring audio styles (like making something sound from a different era or genre) over long 
audio samples. 

However, remember that developments in this field can also have negative impacts. One of the 
possible adverse effects is copyright infringement, where a song can be plagiarized by simply 
changing the sound of the instruments. Also, using this technology can reduce creativity, as music 
producers may be tempted to rely on this technology to make music. Furthermore, the distinctiveness 
of a piece of music can be lost when musicians no longer use their full self-expression in the music 
creation process. Therefore, ethics and self-awareness are necessary for using technologies such as 
timbre-style transfer techniques. Music industry players must use these technologies responsibly and 
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respect the artistic values and originality in every work produced. This is important to maintain the 
integrity of music and ensure that technology remains a tool, not a substitute for human creativity. 

IV. Conclusions 

This research obtained several essential conclusions from the results of the trials that have been 

carried out. Through timbre style transfer, songs can transform significantly, creating a different sound 

from the original song. Songs that initially had a piano sound became guitar sounds and vice versa. 

This research utilizes the Generator-Discriminator model to perform timbre-style transfer tasks. This 

model was trained using several hyperparameter configurations, with an initial learning rate of 0.005 

and a learning rate scheduler to adjust the training process, dropout of 0.1, and batch sizes of 64 and 

128. The input type entered the model was a column vector mel-spectrogram from the song, which 

was converted. The trained model handled songs with the original tempo and songs with a slower 

tempo. The trained discriminator model can evaluate the generator results very well because the 

confusion level is minimal. This can be seen from the fact that even though the threshold value used 

is very low, the discriminator still gives a high score. 

The main challenge of this research is the difficulty in obtaining an appropriate model, which 

makes it hard to reduce the loss values generated during the training process. This issue affects the 

quality of the generated waveforms, resulting in imperfect and noisy audio, particularly in the guitar-

to-piano model. Choosing the proper loss function also presents a challenge, as multiple experiments 

are required to find a suitable one. This study's limitations include using only one type of dataset, 

specifically the MAESTRO dataset. The research does not utilize pre-trained models and focuses 

solely on developing a custom model. 

For future research, it is recommended to try using an autoencoder-based model such as VQ-VAE. 

Using a more varied dataset is also recommended because it is hoped that it can overcome the problem 

of overfitting. It is also recommended to select a dataset to use a dataset that already has the sounds 

of all the musical instruments we want to convert, for example, in this study, the guitar and piano. 

Several different datasets are also highly recommended to make the dataset more generalized. Apart 

from that, further research can utilize pre-trained models because the large number of features that the 

selected pre-trained model has learned is expected to improve the prediction results of the model. 
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