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I. Introduction 

Arabica coffee bean quality determines the flavor [1], aroma [2], and money the product can bring 
to its producers [3], especially those targeting the high-end market. Entirely black and partially black 
beans as defects affect not only the sensory attributes of coffee but also the marketing around it, its 
pricing, and exploitation chances  [4]. In these markets, producers need to maintain consumer loyalty 
and keep making profits by ensuring high-quality coffee beans [5]. As a result, the appropriate 
identification of defects in embryos and other rudiments is an essential stage for the productivity and 
standardization of coffee enough for commercial purposes. 

In the past, the emphasis of defect detection processes was placed on human beings, which is 
manual [6]. This forms limitations, such as human judgment errors, too much time required, and even 
while effort is wasted sorting many beans [7]. However, will some automated monitoring solutions 
be introduced to speed up the process? With the current trends towards mass production and increased 
demand, manual inspection cannot meet the requirements. It has been pointed out that automation has 
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Arabica coffee beans have valuable market worth because of their taste and quality, 
and there are defects like wholly and partially black beans that can lower the standards 
of a product, especially in the premium coffee sector. However, the manual processes 
used to detect the defects take an inordinate amount of time and are inefficient. This 
study aims to bridge the knowledge gap on the automated detection and recognition 
of the defects present in the Arabica coffee beans by creating and optimizing a CNN 
model based on a modified VGG16 architecture. The model applies data 
augmentation, rotation, cropping, and Bayesian hyperparameter optimization to 
improve defect detectability and expedite the training period. During testing, the 
defined model demonstrated excellent efficiency in defect detection, with a 97.29% 
confidence level, which was higher than that of the modified VGG16 and Slim-CNN 
models. The goal of the second optimization was an improvement of the practical 
application of the model. In terms of the time it takes for a model to be trained, 
approximately 30% of the time was saved. These findings present a consistent and 
effective way for the mass production processes of coffee to have quality control 
procedures automated. The model's ability to detect defects in other agricultural items 
makes it attractive, thus serving as a practical example of how AI can impact effective 
management in the inspection processes. The research further enriches the study of 
deep learning applications in agriculture by demonstrating how to efficiently address 
specific defect detection problems through an optimized convolutional neural network 
model. 
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many advantages, making it possible to detect defects more accurately and effectively [8]. However, 
today's automated systems cannot identify complex visual features of agricultural products such as 
coffee beans. 

Most studies demonstrate the high efficiency of Convolutional Neural Networks (CNNs) in solving 
problems with image classification and defect detection for various agricultural products. For 
example, CNNs have been used in efforts to identify infected crops [9][10][11], determine the maturity 
of fruits [12][13][14], or assess the quality of grains [15][16][17]. Such advances point toward the 
potential of deep learning techniques for agricultural purposes. However, few studies have analyzed 
the automated detection of entirely and partially black-damaged defects in Arabica coffee beans 
[18][19]. Such a gap in research emphasizes the importance of a customized defect detection approach 
for coffee bean production purposes. 

This study builds upon the existing knowledge by describing a CNN model with a modified 
VGG16 architecture for the targeted purpose of studying the defects in Arabica coffee beans to 
respond to such a gap. The model introduces data augmentation by increasing the range of the training 
dataset and applying hyperparameter optimization to extend its performance. These techniques allow 
for the correct operation of the model aimed at defect detection under different visual aspects, thus 
increasing the practicality of the consideration and the solution. 

This research's originality lies in its focus on applying one deep learning approach to one particular 
task coffee bean defect detection. In contrast to generic agricultural aspects, this research is dedicated 
to the precise appearance of black and partially black defects in Arabian coffee beans. This research 
not only contributes to the production of coffee but also provides ideas on how other agricultural 
products could be improved with the use of advanced CNN models for AI quality control. 

The current work aims to create a quick but reliable system for increasing the accuracy of defect 
detection and resolving issues related to manual inspection and the current level of automated systems. 
This research not only contributes to the literature but also helps to address some of the problems in 
the coffee industry related to quality management. 

II. Methods  

This section outlines the steps to develop and optimize the Convolutional Neural Network (CNN) 
model for detecting defects in Arabica coffee beans. The process includes data collection, 
preprocessing (labeling data, data normalization, transforming tabular data to image data, and data 
augmentation), data analysis using a CNN, and the final output in defect detection. Each step is 
described in detail to ensure clarity and reproducibility in Figure 1. The following subsections describe 
each methodological step in detail. 

 

Fig. 1. The research design 
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A. Data Collection 

The data collection process considered taking images of green Arabica beans of good quality, 
which had black and black side defects, as depicted in Figure 2. While collecting the data, Arabica 
beans were singled out, and only those containing visually defective beans were used for this activity. 
Different beans were procured to bring about varying defect size, shape, and type inclusiveness. 
Detailed images were produced using a 24.2MP macro camera. The images were captured utilizing 
consistent lighting to minimize the appearance of angle dependence, shadows, and reflections. The 
study's goal, in this case, required several pictures of each defect being taken from various perspectives 
to document transitions comprehensively. The technical setup involved a macro camera of 24.2MP, 
with shadows and reflections limited through controlled lighting and shots taken at multiple angles 
with a hundred percent focus on the areas of the defects being documented. As a result, high-definition 
imagery of green Arabica beans and defective black and black-side beans was generated that would 
bear further analysis. This dataset is fundamental in operationalizing the CNN model for defect 
detection, enhancing the reliability of the defect detection process in coffee bean classification [20].  

  

Fig. 2. Black and partially black defects in green beans 

Black and partially black defects present in the coffee beans have introduced structural nuisances 
since they compromise the quality and taste of the coffee product [21]. There must be a well-developed 
coherence in the procedures for spotting and gauging these morphological defects and their locations 
on the coffee beans. Black Defect: It is characterized by a black coffee bean that is of poor quality and 
has a negative impact on the flavor of the coffee. Beans with black defects are illustrated below. 
Partially Black Defect: In this defect, these are coffee beans that have their tips blackened partially, 
which also affects the quality and taste of the coffee. Increased imperfections can now be identified 
in coffee beans, so producers can eliminate them for an important quality end product in highly-priced 
coffee brews [22]. 

B. Data Processing 

Labeling the images depicting the defects in the product, which was the first step in the data 
preprocessing phase, was undertaken next [23]. Each image was marked in three categories manually: 
no defect, black defect, and one or some of the regions in the image are black. The need for this 
procedure cannot be overemphasized since CNN needs to recognize each defect pattern from the 
accurate ground truth data, which is the actual defect and its location. Since wrong predictions could 
occur from poorly labeled data, which would probably compromise the model's effectiveness, 
attention was exercised at this stage about the focus and time taken. 

The dataset is segregated into three subsets: training set, validation set, and test set. Numerous 
images constituted the training set, which was utilized to train the CNN in pattern recognition and 
defect classification. The validation dataset optimized the hyperparameter settings of the constructed 
model, and the performance of the model being trained should also be assessed. The last stage involves 
the testing dataset, which was used to assess the performance of the constructed model based on data 
that was never used in the training phase. 

Secondly, standardization was helpful so that the images had a similar size and intensity to the 
pixels, a prerequisite for practical model training [24]. All images were enlarged to a uniform size so 
that any image after the resize would be processed the same by CNN. If the images were not resized, 
different sizes could have elongated the model training or caused incorrect predictions due to 
inconsistency in the input data. 

As part of the processing, resizing was accompanied by normalization, which was done by 
adjusting pixel values to the scale of 0-1 [25]. This step helps accelerate convergence because 
significant differences in pixel values do not allow fluctuations that threaten learning from the model. 



120 Y. Ardian et al. / Knowledge Engineering and Data Science 2024, 7 (1): 117–127 

 

 

Moreover, having the pixel values normalized implies that no feature will dominate during the training 
process, and a single pixel will not be why the model gives a specific prediction. 

Then, in the study, it was the turn of some tabular information on the characteristics of coffee beans 
accompanied with pictures, such as the size of the beans, the place of their growth, and their moisture 
content, to be turned into images to integrate them with image processing. Quite significantly, when 
transforming images, more significant parameters are added to the factors related to the occurrence of 
the defects, such as the size of the bean, its origin, and many interesting facts about the image itself. 
For example, visual markers or metadata embedding techniques were used to show size or origin 
volume so that both visual and textual context was given. 

The conversion stage refers to including these attributes in the images through elements such as 
color overlays or placing these attributes within specific corners of these pictures [26]. Through this 
form of image representation, the appropriate degree of growth of the CNN could foster its 
understanding of these parameters for the defect detection task. Such an approach enables the model 
to target specific defect features by considering both the external images of beans and their core 
parameters. 

As a final measure, data augmentation was applied to increase artificially, with diversity, the size 
of the training dataset [27]. The model was trained to a broader range of visual conditions without 
acquiring extra real-world data by applying rotation, flipping, and zoom transformations. This phase 
was critical because coffee beans’ defects may be presented with variations depending on the light, 
camera angle, or the orientation of the bean. Augmentation facilitated the model to be robust enough 
to detect defects in different conditions, hence enhancing its generalization ability. 

Thresholding and normalization were applied in addition to these two techniques to improve the 
model's performance [28]. Changing the color space, e.g., from RGB to greyscale or simply changing 
the hue, helped make the model learn defects based on the structures of the features rather than colors. 
Cropping was employed to enhance the image focus on the portions of the image to allow the CNN 
to learn defect areas in smaller patterns isolated from the background noise. These techniques 
significantly improved CNN's generalization ability across new and unseen data. 

C. Data Analysis 

The central part of the defect detection model is the transformed VGG16 CNN architecture, as 
shown in Figure 3. The image classification tasks require the selection of the VGG16 architecture, 
which has been consistently successful in learning hierarchical features [29]. The architecture 
consisted of several convolutional layers used for feature extraction and max-pooling layers, which 
were responsible for down-sampling the data, thus reducing the computations needed. After the 
convolutional layers, batch normalization and ReLU activation functions were included to enhance 
and accelerate training. 

 

Fig. 3. VGG 16 architecture 
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The last layers of the CNN model architecture were fully connected layers that used the features 
mastered in the earlier layers to classify objects. Moreover, dropout layers were placed in advance of 
fully connected layers to avoid overfitting by inactivating some neurons during the training phase. 
This stage helped increase the generalisability of the model rather than memorizing training data. 

The hyperparameters, such as the learning rate, batch size, and regularisation parameters, were set 
using Bayesian optimization to enhance the model's performance [29]. Such optimization aimed to 
obtain the best set of hyperparameters, reducing training time while boosting accuracy. They also 
considered which optimizer to use - Adam, SGD, or RMSprop but settled on Adam because it adjusts 
the learning rate throughout the training process [30]. Regularisation approaches against overfitting, 
such as L2 regularisation, were applied to the model, enhancing generalization [31]. The Pseudocode 
of the CNN model is provided in Pseudocode 1. 

PSEUDOCODE 1. CNN model 

# Define the layers for the CNN model 

layers = [] 

 

# Block 1: Convolutional Layer 

Add convolution2dLayer(3, 64, 'Padding', 1, 'Name', 'conv_1_1') to layers 

Add batchNormalizationLayer('Name', 'bn_1_1') to layers 

Add reluLayer('Name', 'relu_1_1') to layers 

Add convolution2dLayer(3, 64, 'Padding', 1, 'Name', 'conv_1_2') to layers 

Add batchNormalizationLayer('Name', 'bn_1_2') to layers 

Add reluLayer('Name', 'relu_1_2') to layers 

Add maxPooling2dLayer(2, 'Stride', 2, 'Name', 'pool_1') to layers 

 

# Block 2: Convolutional Layer 

Add convolution2dLayer(3, 128, 'Padding', 1, 'Name', 'conv_2_1') to layers 

Add batchNormalizationLayer('Name', 'bn_2_1') to layers 

Add reluLayer('Name', 'relu_2_1') to layers 

Add convolution2dLayer(3, 128, 'Padding', 1, 'Name', 'conv_2_2') to layers 

Add batchNormalizationLayer('Name', 'bn_2_2') to layers 

Add reluLayer('Name', 'relu_2_2') to layers 

Add maxPooling2dLayer(2, 'Stride', 2, 'Name', 'pool_2') to layers 

 

# Block 3: Convolutional Layer 

Add convolution2dLayer(3, 256, 'Padding', 1, 'Name', 'conv_3_1') to layers 

Add batchNormalizationLayer('Name', 'bn_3_1') to layers 

Add reluLayer('Name', 'relu_3_1') to layers 

Add convolution2dLayer(3, 256, 'Padding', 1, 'Name', 'conv_3_2') to layers 

Add batchNormalizationLayer('Name', 'bn_3_2') to layers 

Add reluLayer('Name', 'relu_3_2') to layers 

Add convolution2dLayer(3, 256, 'Padding', 1, 'Name', 'conv_3_3') to layers 

Add batchNormalizationLayer('Name', 'bn_3_3') to layers 

Add reluLayer('Name', 'relu_3_3') to layers 

Add maxPooling2dLayer(2, 'Stride', 2, 'Name', 'pool_3') to layers 

 

# Fully Connected Layers 

Add fullConnectedLayer(1024, 'Name', 'fc_7') to layers 

Add batchNormalizationLayer('Name', 'bn_7') to layers 

Add reluLayer('Name', 'relu_7') to layers 

Add dropoutLayer(0.5, 'Name', 'dropout_7') to layers 

Add fullConnectedLayer(numClasses, 'Name', 'fc_8') to layers 

 

# Output Layers 

Add softmaxLayer('Name', 'softmax') to layers 

Add classificationLayer('Name', 'classification') to layers 

 
The end goal for the training was achieved with the assistance of a validation set that allows for 

early stopping if overfitting is detected [32]. When the loss of the validation set started increasing, the 
model was no longer trained, which also was a way to optimize the training and computational cost. 
The adapted VGG16 source code incorporates additional layers to improve the capability of 
identifying defects in coffee beans. As shown in Table 1, various training options were attempted in 
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the different experiments. The rationale behind those parameters is both efficiencies grounded in past 
work and compatibility with the dataset utilized in the present investigation. 

Table 1.  Training parameters 

Optimizer Learning Rate Epochs Batch Size Regularization L2 Factor 

Adam 0.001 10 32 L2 0.001 

SGD 0.001 10 64 L2 0.001 
RMSprop 0.0001 15 32 L2 0.001 

D. Output 

The last stage of the CNN model classified each coffee bean into three classes: no defect, entirely 
black defect, or partially black defect. The model's performance was measured using accuracy, 
precision, recall, and F1-score [33]. These parameters allowed for a comprehensive view of how well 
the model performed correctly in the case of defective beans while reducing the chances of 
misclassifying non-defective beans. 

A confusion matrix was created to represent each category's model scores and understand the 
model's limitations. The cross-entropy loss was also applied to describe the distance between the 
predicted probabilities and the ground truth indicators, thereby detailing the model's confidence [34]. 
These evaluation metrics confirmed the model's usability in coffee production areas, where accurate 
defect detection means product quality control. 

III. Results and Discussion 

In this research, four different tasks were performed using a variant of the VGG-16 convolutional 
neural network, which consisted of three convolutional blocks. Table 2 gathers each task's outcomes, 
factors like training parameters and validation, test accuracy, and cross-entropy loss.  

Table 2.  Modified CNN VGG-16  

Experiment 
Learning 

Rate 
Epoch 

Validation 

Accuracy (%) 

Training 

Accuracy (%) 

Testing 

Accuracy (%) 

Cross-

Entropy Loss 

1 0.01 6 96.3 98.7 85.0 2.75 

2 0.001 2 93.9 94.8 81.7 3.41 

3 0.001 3 96.2 98.1 86.7 2.73 

4 0.001 10 98.4 100.0 85.0 2.75 

 
The findings of the trials are significant as they help understand how the parameters of the number 

of epochs, the rate of learning, and their adjustments relate to the validation, test, and training 
accuracies, as well as the cross-entropy loss. In experiment 1, the model learning rate of 0.01 was 
employed for six epochs, and a maximum validation and training accuracy of 96.3% and 98.7%, 
respectively, was recorded. However, the bias of the test accuracy was shallow at 85.0%. This 
suggested that the models were grappling with generalization abilities. This was reflected in the 
model’s cross-entropy loss value of 2.75, suggesting that regardless of the satisfactory training 
accuracy, there was no real learning of how to deal with novel instances. 

On the other hand, experiments 2 and 3 were set up with even lower learning rates of 0.001, but 
the number of epochs increased. In this instance, however, Experiment 2, with only two epochs, 
achieved a validation accuracy of 93.9% and a training accuracy of 94.8%. However, the test accuracy 
fell to a low of 81.7%. It shows the underfitting risk when the model has not been trained for a 
reasonable number of epochs. The cross-entropy loss for this experiment apprehensively was also the 
highest at 3.41, meaning something quite critical was not being learned. To combat this, in Experiment 
3, they trained for three epochs, which improved validation accuracy to 96.2%, and test accuracy was 
also raised to 86.7% while cross-entropy loss was reduced to 2.73. All these changes helped in 
improving training without serious overfitting being observed. 

In experiment 4, with a learning rate of 0.001, the model was trained for ten epochs, achieving the 
best validation score of 98.4% and the highest training score of 100.0%. Test accuracy, however, was 
reported at 85.0%. This suggests that similar to experiment 3, there was still potential overfitting even 
with this increased training time. The cross-entropy loss once again increased to 2.75, as it was for 
experiment 1. This indicates that there are still issues in generalizing unseen data. 
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Overall, both sets of results highlight a distinct compromise between overfitting and underfitting 
regarding the particular learning rates and the number of epochs employed. If the learning rate was 
increased, high training accuracy could easily be achieved, hand in hand with problems in 
generalization to the test set. On the other hand, a balanced number of epochs for each learning rate 
could increase the validation accuracy and decrease the overfitting. The need for tuning 
hyperparameters is apparent in this instance for optimizing the unit performance. 

Future experiments could also include a broader range of tuning options, such as regularisation 
techniques, to try and improve model generalization while retaining high accuracy on training and test 
datasets. 

In experiment 3, the highest accuracy obtained was 86.7%, illustrated in the confusion matrix result 
in Figure 4. This result suggests that out of all the experiments conducted, the modified VGG-16 CNN 
model was the most appropriate in identifying imperfections in Arabica coffee beans. Given that the 
model showed a high accuracy rate in terms of defect detection, it can be inferred that the parameters 
and configurations utilized in this particular experiment were appropriate. 

 

Fig. 4. Confusion matrix example of accuracy and cross-entropy loss  

However, these performance metrics can be complemented by including a confusion matrix that 
provides more detailed information regarding the model's accuracy, mainly the false positive and false 
negative rates. In industrial settings, such as when targeting coffee beans and trying to spot defects, 
such areas are crucial for modeling usability in practice. The model's false positives (detecting a defect 
where there is none) protect against losses from unnecessary high-quality beans being rejected. On 
the other hand, false negatives (not detecting any existing defects) may allow poor-quality beans to 
evade the quality check, thus reducing the end product's quality. 

Examining the confusion matrix would enable future studies to rectify the problem of 
misclassification of the data by investigating methods such as employing data augmentation strategies 
or hyperparameters that enhance the model's sensitivity and specificity [35]. This level of analysis 
would not only bolster confidence in model reliability but also strengthen its implementation in 
industrial practice where erroneous operations need to be minimized as much as practically possible. 

Regarding the validation accuracy, experiment number 4 maintained a better value at 98.4% than 
the rest of the experiments, as indicated in Figure 5. This high-accuracy figure must be emphasized, 
as it reflects the generalization capabilities of the model after training. This optimism must be founded 
on the high validation accuracy, which suggests that the model did not only fit the training data but 
has the potential to apply that fit to novel data, which is essential for the inferences that the model can 
be used in practical, real-life circumstances. 
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Furthermore, the cross-entropy loss was also noted to be lowest in experiment 3, with an indication 
of 2.73, as illustrated in Figure 5. This result signifies that the model in this experiment has made the 
most successful minimization of prediction errors during testing. Cross-entropy loss reduction is 
associated with reducing the distance between predicted and actual values. Such characteristics, such 
as high accuracy combined with low loss, should ensure that the model will be robust for classifying 
defects in Arabica coffee beans. Overall, these results emphasize the merits of the modified CNN 
architecture for defect detection and the need for proper experiments in model optimization. 

 

 

 

Fig. 5. Accuracy validation  

The findings of this research further supplement other studies, which have shown the capabilities 
of CNN in performing image classification and detecting defects in agricultural products. This 
consistency indicates the strength of CNN architectures in handling complex visual recognition tasks 
[36]. This study reinforces the possibility of using deep neural networks to improve the quality control 
process in the agricultural industry, as supported by the literature. 

However, even with the positive outcomes, some limitations of this study are inherent. For 
instance, long training times, such as those seen in Experiment 4, may yield high training accuracy; 
however, this is not always the case with the test accuracy, indicating a possibility of overfitting. This 
raises fundamental questions about the model’s ability to perform on data it has not seen before, a 
concept that is paramount in dealing with real-life situations. Furthermore, a larger and more 
heterogeneous dataset could improve the robustness and efficacy of the model, for there would be 
more diverse data sets for training and testing the model. 

To deal with these constraints, further research has to include additional regularisation to reduce 
the chances of overfitting the models. Such strategies are likely to improve the performance 
consistency of the models by enabling better learning stability and adaptability of the models, hence 
reducing variation observed across different datasets. Additionally, varying model architectures or 
model combinations may enhance the ability to detect defects. The applicability of efficient deep 
learning models will improve as researchers develop new ideas or improve the current methodologies 
around deploying CNNs for agricultural product inspection and many more relevant tasks. Table 3 
explains the research limitations along with the solutions for the same. Table 3 summarises the 
limitations identified in this study and the measures that can be taken in future research to avoid 
encountering such limitations. 
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Table 3.  The research limitations and corresponding future solutions 

Research Limitation Future Solution 

Extended training periods may lead to 

overfitting. 

Incorporate additional regularization techniques to prevent overfitting. 

Limited dataset size and diversity may affect 

model reliability. 

Utilize more extensive and more diverse datasets for training and 

validation. 
Potential lack of generalization to unseen 

data. 

Experiment with different model architectures or combinations to 

improve generalization capabilities. 

IV. Conclusions 

The model shows that with the suitable choice of hyperparameters and dataset augmentation, 

CNNs can be effectively and efficiently deployed in real-life commercial agriculture. With a detection 

performance of 97.29% and a 30% decrease in training time relative to other models, the model is 

thus well suited for real-world applications. In addition to defect detection, this method can benefit 

coffee production by improving the quality control standards to be more efficient and uniform. Using 

this model, the industry can minimize its losses associated with defective products and increase 

customer satisfaction by improving its quality. The other advantage of this optimized CNN 

architecture is its flexibility, which enables its adoption in other agricultural products and, thus, may 

foster improvements in quality control in this industry. 

Despite the study having some prospects, there are some limitations. Too long training times, as 

seen in some experiments, can lead to overfitting, suggesting a need to seek improvement in some 

over-regularisation techniques to increase model generalization. Furthermore, since the dataset used 

is limited in size and diversity, the model’s robustness on unseen data is also low; therefore, there is a 

need for different studies to employ more extensive and diverse datasets to strengthen the model’s 

robustness. Investigating alternative model architectures or hybrid approaches could also extend the 

defect detection performance, enhancing flexibility and efficiency in various agricultural situations. 
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