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I. Introduction  

In modern healthcare, medical image classification is vital in assisting clinicians with accurate and 
timely diagnoses [1]. The complexity and diversity of medical datasets, which include conditions such 
as Alzheimer's, Parkinson’s Disease, COVID-19, brain tumours, and lung cancer, underscore the need 
for robust classification methods [2][3][4]. Despite significant advancements, a major challenge 
persists: addressing the issue of unbalanced datasets, which is critical for ensuring reliable and precise 
medical image classification [5]. 

Current literature indicates that imbalanced medical data can lead to biased model performance, 
often resulting in lower accuracy for underrepresented classes [6]. Addressing this gap requires a 
strategy that combines effective feature extraction methods with class imbalance handling techniques  
[7][8][9]. While techniques like Synthetic Sampling, Cost-Sensitive Learning, and Ensemble Methods 
have been explored, there remains a need for approaches that seamlessly integrate data balancing with 
feature extraction, particularly for multi-class medical image datasets [1][8]. 

This study addresses this gap by implementing a novel combination of Canny edge detection, Hu-
moment-based feature extraction, and oversampling/undersampling techniques. Canny segmentation 
was selected for its precision in isolating key image structures. It is critical in medical contexts where 
feature clarity can impact classification outcomes [9][10][11][12]. Hu-moment features capture shape 
and texture, effectively representing medical images, while oversampling and undersampling address 
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This study addresses the critical role of medical image classification in enhancing 
healthcare effectiveness and tackling the challenges of imbalanced medical datasets. 
It focuses on optimizing classification performance by integrating Canny edge 
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oversampling and undersampling techniques. Five diverse medical datasets were 
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contributed to balanced performance gains in the COVID-19 class. Metrics, including 
accuracy, precision, recall, and F1-score, provided insights into the model’s 
effectiveness. These findings highlight the positive impact of data balancing 
techniques on K-NN performance in imbalanced medical image classification. 
Continued research is essential to refine these techniques and improve medical 
diagnostics. 
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data imbalance by ensuring a more equitable distribution across classes [13]. Together, these methods 
are expected to enhance model performance by addressing feature and data-related challenges in 
medical image classification. 

The novelty of this approach lies in the integrated use of these techniques within a K-Nearest 
Neighbors (K-NN) framework. Unlike traditional methods, this approach leverages Canny 
segmentation and Hu-moment feature extraction to improve feature representation before applying 
class balancing. This integration will provide a more accurate and balanced classification framework 
for imbalanced medical image data. This research contributes a new perspective to developing medical 
image classification systems by optimising classification accuracy and reliability. It highlights the 
potential of combining these techniques for improved diagnostic tools. 

  
II. Method 

This research utilizes an experimental design to improve medical image classification by 
integrating Canny segmentation, Hu-moment-based feature extraction, and the K-Nearest Neighbors 
(K-NN) algorithm. This approach comprehensively explores the effects of each preprocessing and 

resampling step on model performance, as shown in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Visualization of the research methodology flowchart 

A. Collection of Medical Image Data 

This research chose five distinct medical datasets to capture various diagnostic challenges. These 
datasets include images for Alzheimer’s and Parkinson’s diseases, COVID-19, brain tumours, chest 
CT scans, and lung cancer, all sourced from Kaggle. The selection of these datasets aims to create a 
comprehensive framework that reflects the diversity and complexity encountered in real-world 
medical applications. Each dataset includes important attributes, such as the number of cases, classes, 
and missing values, summarized in Table 1. This diversity enables a robust evaluation of the proposed 
classification approach across various medical conditions [6][14]. 
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Table 1.  Dataset information 

Dataset 
Number of 

Cases 

Number of 

Attributes 

Number 
Attribute 

Characteristics 

Missing 

Values 
Name of 

Class 

Number in 

Each Class 

chest-ctscan 613 7 4 

195 

Numeric No 
115 

148 

155 

Brain Tumor 

Classification (MRI) 
2870 7 4 

826 

Numeric No 
822 

395 

827 

IQ- OTH/N CC -
Lung Cancer 

1097 7 3 
120 

Numeric No 561 

416 

Alzheimer 

Parkinson Diseases 
6477 7 3 

2561 

Numeric No 3010 
906 

Covid- 19 251 7 3 

111 

Numeric No 70 

70 

 
B. Data Preprocessing  

Data analysis begins with adjusting the dataset size and applying Canny Segmentation on medical 
images to identify edges and distinctive features. These features are then extracted using the 
Humoment method. The next step was class balancing on each dataset due to an imbalance in the 
number of classes (Figure 1). Data balancing uses two approaches, namely under-sampling and over-
sampling. The K-NN algorithm is used for classification, and this process is evaluated using a cross-
validation method with K-fold 5 [14][15][16]. The final results were evaluated through performance 
measures such as accuracy, precision, recall, and f-measure. 

The data preprocessing phase began by resizing all images to a standard dimension of 224x224 
pixels. This step ensures uniformity across datasets, facilitating consistency in subsequent analysis 
and classification stages [17][18]. It also ensures that all images are uniform in size, providing benefits 
in subsequent stages of analysis or processing. The results of the data size adjustment process can be 
found in Figure 2. 

 

  
Fig. 2. Resizing dataset visualization 

 
Next, Canny segmentation was applied to each image to detect edges, which is critical for 

highlighting structural features that help the classification model distinguish between classes. Canny 
segmentation calculates the gradient (𝐺, 𝐺𝑥, 𝐺𝑦) to represent intensity changes, making edge features 

more prominent [19]. The main objective is to produce good edge detection while reducing the effects 
of noise, the equation as in (1). 

𝐺 =  √𝐺𝑥
2 + 𝐺𝑦

2 () 

 

𝐺 represents the image gradient at each pixel point, measuring how fast the image intensity changes 
around that point. , 𝐺𝑥 Represents the gradient component in the horizontal direction (𝑥 − 𝑎𝑥𝑖𝑠), 
indicating how fast the intensity changes horizontally at that pixel point. 𝐺𝑦, on the other hand, is the 
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gradient component in the vertical direction (y-axis), indicating how fast the intensity changes 
vertically at that pixel point. By combining 𝐺𝑥 and 𝐺𝑦, we can understand the direction and degree of 

change in image intensity at each point. The result of the Canny segmentation process can be seen in 
Figure 3. 

 

Fig. 3. Canny segmentation visualization 

 
Following segmentation, Hu-moment-based feature extraction was employed to generate feature 

representations invariant to transformations in scale, rotation, and translation [19][20]. This technique 
calculates central and invariant moments (𝑀𝑖𝑗, ℎ𝑖𝑗), capturing unique patterns within each medical 

image. Figure 4 provides visualizations of the feature extraction results from one of the datasets. The 
moments are calculated by using the lift function of the image intensity distribution [21]. Some 
moments are mathematically transformed to produce invariant moments. The formula for Hu 
Moments can be seen as in (2) to (5). 

ℎ𝑖𝑗 =
𝑀𝑖𝑗

𝑀00
(𝑖+𝑗)/2+1 () 

 
Where ℎ𝑖𝑗 is the i-th, jth invariant moment, 𝑀𝑖𝑗 is the i-th, jth central moment, and 𝑀00 is the zero-

order central moment. The moments are calculated using the formulas as follows: 

𝑀𝑝𝑞 = ∑ ∑ 𝑥𝑝𝑦𝑞𝐼(𝑥, 𝑦)
𝑦𝑥

 (3) 

𝑥̅ =
𝑀10

𝑀00
, 𝑦̅ =

𝑀01

𝑀00
 (4) 

𝜇𝑝𝑞 = ∑ ∑ (𝑥 − 𝑥̅)𝑝(𝑦 − 𝑦̅)𝑞𝐼(𝑥, 𝑦)
𝑦𝑥

 (5) 

𝜂𝑝𝑞 =
𝜇𝑝𝑞

𝜇00
(𝑝+𝑞)/2+1 (6) 

 
With 𝐼(𝑥, 𝑦) is the image intensity at pixel point (𝑥, 𝑦), 𝑥̅ and 𝑦̅ are the image centre of mass, 𝜇𝑝𝑞  

is the normalized central moment, and 𝜂𝑝𝑞 is the normalized invariant moment [22].  A scatter diagram 

and heat map showing the results of feature extraction using Hu-Moments on one of the datasets 
(Chest-ctscan) can be seen in Figure 4. 
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Fig. 4. Visualization of scatter plot and heatmap visualization for a chest-ctscan dataset using hu-moments 

feature extraction 

 
Oversampling and undersampling techniques were applied to handle class imbalances present in 

these medical datasets. Oversampling enhances minority class representation by duplicating or 
synthesizing samples. At the same time, undersampling reduces the dominance of majority classes to 
promote balance. While oversampling benefits model sensitivity, undersampling helps prevent 
overfitting on majority classes. However, it may result in some data loss. Figure 5 illustrates the 
resampling process, and Table 2 details the balanced data distribution achieved for each dataset. 

 
(a) Under-sampling                                                   (b) Over-sampling 

Fig. 5. Data resampling visualization 

Table 2.  Data balancing 

Datasets 
Balancing data in class 

Over-sampling Under-sampling 

Chest CT-Scan 

195 115 

195 115 

195 115 

195 115 

Brain Tumor classification (MRI) 

827 395 
827 395 

827 395 

827 395 

IQ- OTH/N CC -Lung Cancer 
561 120 
561 120 

561 120 

Alzheimer Parkinson Diseases 

3010 906 

3010 906 
3010 906 

Covid-19 

111 70 

111 70 

111 70 
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 In over-sampling, the sample size of the minority class is increased by adding copies of the existing 
sample or by creating a similar synthetic sample. The goal is to balance the majority and minority 
classes, hopefully reducing the risk of model bias towards the majority class. In contrast, under-
sampling involves reducing the number of samples from the majority class, helping to address the 
class imbalance by reducing the dominance of the majority class and ensuring the model is more likely 
to learn patterns from the minority class. 

C. Classification 

Classification is a technique used to identify patterns or distinguishing features within a dataset, 
allowing the differentiation of each class [23]. This research uses classification to categorize each 
medical image into a specific diagnostic category by analyzing its features and patterns. The K-
Nearest Neighbors (K-NN) algorithm was selected for classification, as it aligns well with the nature 
of medical datasets that include various conditions such as Alzheimer's and Parkinson's diseases, 
COVID-19, brain tumours, chest cancer, and lung cancer [24]. K-NN’s simplicity and effectiveness 
in handling multi-class image classification make it a strong candidate for improving the accuracy and 
reliability of automated diagnosis systems [25]. 

The K-NN algorithm operates on the principle that objects with similar characteristics will likely 
belong to the same class. This approach is particularly relevant to medical imaging, where images 
with similar structural features often represent similar medical conditions. K-NN classifies each new 
image by measuring the distance between the image’s feature vector and those of existing images in 
the dataset, determining the class based on the nearest neighbors [26][27]. The Euclidean distance 
formula, commonly used in K-NN, quantifies the similarity between feature vectors and is defined as 
in (7). By leveraging this distance-based classification, K-NN aids in accurately categorizing complex 
medical images, as illustrated in Figure 6. 

𝐷(𝑥, 𝑦) = √∑ (𝑥𝑖 − 𝑦𝑖)2
𝑛

𝑖=1
 () 

Where 𝐷(𝑥, 𝑦) is the distance between two objects 𝑥 and 𝑦, 𝑛 is the number of features in each 
vector (𝑛 dimensions). 

 

Fig. 6. K-NN algorithm 

D.   Evaluation Metrics 

Evaluation metrics are measurement tools used to evaluate the performance of a model or system 
in handling classification tasks [28][29][30]. The classification model’s performance was assessed 
using several evaluation metrics: balanced accuracy, precision, recall, F1-score, and specificity. 
Balanced accuracy combines true positive and true negative rates, providing a comprehensive measure 
that accounts for class imbalances. Precision evaluates the model’s accuracy in identifying positive 
samples, while recall assesses its ability to capture all true positives. The F1 score balances precision 
and recall, particularly useful for datasets with uneven class distributions. Specificity measures the 
model’s accuracy in identifying true negatives. These metrics collectively evaluate model 
performance to ensure a detailed analysis of reliability and diagnostic effectiveness across various 
medical conditions, with calculations as in (8) to (12). 
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𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1

2

𝑇𝑃 + 𝑇𝑁

(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)
  

(8) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 𝐹𝑃 + 𝐹𝑁
 () 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 () 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 () 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
× 100%  () 

III. Result and Discussion 

The results comprehensively evaluate the K-NN model's classification performance across diverse 
medical datasets, explicitly focusing on the impact of class imbalance handling techniques [31][32]. 
The evaluation framework considers three distinct scenarios: (1) the original, unbalanced dataset, (2) 
datasets subjected to oversampling to enhance minority class representation, and (3) datasets 
processed through undersampling to mitigate majority class dominance. The detailed performance 
metrics, including Balanced Accuracy, Accuracy, Precision, Recall, and F1-Score, are presented in 
Table 3 to Table 5, offering an in-depth comparative analysis. 

Table 3 presents a detailed performance evaluation of the K-NN model when applied to unbalanced 
medical datasets, emphasizing key classification metrics, including Balanced Accuracy, Accuracy, 
Precision, Recall, and F1-Score. These metrics provide insight into the model's effectiveness in 
distinguishing various medical conditions despite class distribution disparities. Among the examined 
conditions, Lung Cancer and COVID-19 exhibited the highest balanced accuracy, reaching 0.59, 
suggesting a relatively stable classification performance. Conversely, Brain Tumor classification 
yielded the lowest balanced accuracy at 0.33, underscoring the inherent difficulties of imbalanced 
datasets, mainly when dealing with underrepresented classes. This discrepancy highlights the model's 
tendency to favour majority classes, leading to suboptimal performance for conditions with fewer 
training instances. The results underscore the critical need for effective class balancing techniques to 
mitigate the impact of data imbalance, ensuring that minority classes receive adequate representation 
in the learning process. 

Table 3.  Performance results of the K-NN classification algorithm on the original dataset 

Datasets Algorithm 
Evaluation Matrics 

Balanced Accuracy Accuracy Precision Recall F1-Score 

Chest CT-Scan 

K-NN 

0.45 0.48 0.45 0.48 0.45 

Brain Tumor 0.33 0.35 0.35 0.35 0.34 

Lung Cancer 0.59 0.80 0.75 0.80 0.76 

Alzheimer Parkinson 0.38 0.44 0.44 0.44 0.43 
Covid-19 0.59 0.59 0.61 0.59 0.58 

 
 Table 4 presents the comprehensive performance evaluation after applying oversampling, 
revealing substantial improvements across all key classification metrics in multiple datasets. This 
enhancement is particularly pronounced in classifying medical conditions such as Chest CT-Scan 
abnormalities, Brain Tumors, Lung Cancer, Alzheimer-Parkinson diseases, and COVID-19 cases. 
Implementing oversampling effectively mitigated the challenges of class imbalance, leading to a 
marked increase in balanced accuracy. Notably, the Lung Cancer dataset exhibited the most significant 
improvement, with balanced accuracy surging from 0.59 in its unbalanced state to an impressive 0.80 
after oversampling. This substantial gain highlights the pivotal role of oversampling in amplifying the 
model’s capacity to detect minority class instances more effectively. The results underscore the 
efficacy of this approach in enhancing the K-Nearest Neighbors (K-NN) algorithm’s discriminatory 
power, thereby improving overall classification robustness and ensuring more equitable recognition 
of underrepresented medical conditions. Such findings reaffirm the necessity of employing data-
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balancing techniques in medical image classification to bolster diagnostic reliability and optimize 
predictive performance. 

Table 4.  Performance results of K-NN classification algorithm on the dataset with over-sampling technique 

Datasets Algorithm 
Evaluation Matrics 

Balanced Accuracy Accuracy Precision Recall F1-Score 

Chest CT-Scan 

K-NN 

0.54 0.54 0.55 0.54 0.53 

Brain Tumor 0.40 0.39 0.41 0.39 0.38 

Lung Cancer 0.80 0.80 0.82 0.80 0.79 
Alzheimer Parkinson 0.59 0.59 0.60 0.59 0.58 

Covid-19 0.61 0.62 0.63 0.62 0.61 

 
Table 5 presents the detailed evaluation results following the implementation of the undersampling 

technique. While undersampling effectively balanced the class distributions within the datasets, it 
introduced inevitable trade-offs, particularly compared to the performance observed with 
oversampling. Notably, a decline in several key metrics was observed, especially within the Chest 
CT-Scan and Brain Tumor datasets, highlighting the impact of data reduction on classification 
performance. For instance, as depicted in Figure 7, the balanced accuracy for the Chest CT-Scan 
dataset decreased to 0.46, a notable drop from the 0.54 recorded in the oversampled scenario. This 
decline underscores the potential limitations of undersampling, mainly when dealing with datasets 
where information loss could adversely affect classification accuracy. 

Table 5.  Performance results of K-NN classification algorithm on the dataset with under-sampling technique 

Datasets Algorithm 
Evaluation Matrics 

Balanced Accuracy Accuracy Precision Recall F1-Score 

Chest CT-Scan 

K-NN 

0.46 0.47 0.45 0.47 0.45 

Brain Tumor 0.34 0.34 0.35 0.34 0.34 

Lung Cancer 0.67 0.68 0.68 0.68 0.67 
Alzheimer Parkinson 0.47 0.47 0.46 0.47 0.46 

Covid-19 0.67 0.67 0.71 0.67 0.67 

 
Fig. 7. Visualization of balanced accuracy performance 

 
Conversely, the application of undersampling yielded a performance enhancement in specific 

datasets. Specifically, in the COVID-19 dataset, balanced accuracy improved, rising from 0.61 under 
oversampling to 0.67 with undersampling. This suggests that in cases where majority-class dominance 
leads to skewed decision boundaries, undersampling may enhance the model’s ability to generalize 
across classes, ultimately improving classification reliability for minority-class instances. These 
findings emphasize the necessity of dataset-specific strategies when employing sampling techniques, 
as the effectiveness of undersampling is highly dependent on the nature and distribution of data. 
Therefore, while undersampling proves beneficial in mitigating class imbalance in some cases, its 
suitability must be carefully evaluated to ensure minimal loss of critical diagnostic information in 
medical image classification tasks. 
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The findings underscore the critical impact of class imbalance on the performance of the K-NN 
model across diverse medical datasets. Without balancing techniques, the model exhibited substantial 
variability in classification effectiveness, underscoring the necessity of addressing class disparities to 
ensure reliable predictions. Among the tested methods, oversampling generally led to superior 
performance across most datasets by amplifying minority class representation, thereby enhancing 
model sensitivity. In contrast, while undersampling effectively mitigated class imbalance by reducing 
the dominance of majority classes, it also introduced performance trade-offs, with specific datasets 
experiencing a decline in classification accuracy due to potential information loss. This was 
particularly evident in the Chest CT-Scan and Brain Tumor datasets, where undersampling resulted 
in lower balanced accuracy than the oversampled scenario. 

Notably, the impact of these techniques was dataset-dependent, revealing that a one-size-fits-all 
approach to class balancing may not be optimal in medical image classification. The Lung Cancer 
dataset demonstrated the most significant improvement in balanced accuracy following oversampling, 
suggesting that generating synthetic samples can effectively improve model generalization for datasets 
with pronounced class imbalance. Conversely, the COVID-19 dataset exhibited better performance 
with undersampling, implying that reducing data redundancy may refine decision boundaries and 
improve classification robustness in cases where the majority class is disproportionately large. These 
findings highlight the necessity of tailoring resampling strategies to the unique characteristics of each 
medical dataset rather than relying on conventional balancing techniques in a generalized manner. 

The implications of these results extend beyond technical performance, offering critical insights 
into the design of automated diagnostic tools. Ineffective class balancing can lead to biased 
predictions, potentially compromising clinical decision-making and patient outcomes. Therefore, 
selecting an appropriate data-balancing strategy is not merely an optimization task but a crucial 
component of ethical AI deployment in healthcare. Future research should explore advanced 
resampling techniques, such as hybrid approaches that combine oversampling and undersampling 
dynamically based on dataset properties. Additionally, refining hyperparameter configurations and 
integrating deep learning architectures—such as convolutional neural networks (CNNs) or attention-
based mechanisms—could further enhance the adaptability and robustness of classification models. 
A more nuanced exploration of domain-specific balancing techniques, including cost-sensitive 
learning or synthetic augmentation strategies tailored to medical imaging, could significantly 
contribute to developing AI-driven diagnostic systems with improved clinical reliability and 
generalizability. 

IV. Conclusion 

This study analyzes how oversampling and undersampling affect the K-NN algorithm's 
performance in classifying imbalanced medical datasets. The findings reveal that oversampling 
generally improves balanced accuracy across most datasets, particularly in lung cancer detection, 
demonstrating its effectiveness in addressing class imbalance. At the same time, undersampling 
showed benefits for specific minority classes, notably enhancing balanced accuracy in COVID-19 
detection. This research advances understanding in the field by offering insights into the nuanced 
effects of oversampling and undersampling on K-NN performance, contributing to the broader domain 
of automated medical diagnosis by guiding the selection of appropriate balancing techniques to 
improve classification accuracy for complex medical datasets. Recommendations for future research 
include exploring optimal parameter settings for these methods, considering alternative classification 
algorithms, and validating the model on more extensive and diverse datasets to strengthen automated 
diagnostic systems in real-world clinical contexts. This study thus lays a foundation for developing 
more robust, accurate classification models to support advancements in automated medical diagnosis. 
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