

Jurnal Ekonomi dan Bisnis

Journal homepage: www.ejournal.uksw.edu/jeb ISSN 1979-6471 E-ISSN 2528-0147

ANALYSIS OF EXPORTS, FUEL IMPORTS, PRODUCTION, AND CONSUMPTION OF CRUDE OIL ON ECONOMIC GROWTH IN 2012-2021 (CASE STUDY: 8 G20 COUNTRIES)

Dhani Tri Hidayat

^a Faculty of Economics and Business, Ahmad Dahlan University, Yogyakarta, Indonesia, dhani1900010121@webmail.uad.ac.id

INFO ARTIKEL

Riwayat Artikel:

Received Revised Accepted

Keywords:

Economic Growth Exports Fuel Imports Fuel Production Crude Oil Consumtion Crude Oil

Kata Kunci:

Pertumbuhan Ekonomi Ekspor Bahan Bakar Impor Bahan Bakar Produksi Minyak Mentah Konsumsi Minyak Mentah

ABSTRACT

Economic growth is used to measure the welfare of society. Fluctuations in oil prices have considerable consequences on economic activity. The transmission mechanism through which oil prices impact real economic activity includes both supply and demand channels. World oil production and consumption have increased almost equally. Economic growth is often associated with energy, where energy is one of the various important inputs in the process of production. Energy, especially oil, has an impact on economic activity on a micro or macro scale. This study uses data on economic growth, fuel exports, fuel imports, crude oil production and crude oil consumption in 8 (eight) G20 countries. This study uses secondary observation data with observations of 8 (eight) G20 countries using the Seemingly Unrelated Regression (SUR) method. The results of this study are variables that have a significant effect, namely the variables of Fuel Exports and Crude Oil Production have a negative effect on economic growth, then the variables of Fuel Imports and Crude Oil Consumption have a positive effect on economic growth.

ABSTRAK

Pertumbuhan ekonomi yang digunakan untuk mengukur kesejahteraan masyarakat. Fluktuasi harga minyak memiliki konsekuensi yang cukup besar pada kegiatan ekonomi. Mekanisme transmisi melalui mana harga minyak berdampak pada kegiatan ekonomi riil mencakup saluran penawaran dan permintaan. Produksi dan konsumsi minyak dunia mengalami peningkatan yang hampir sama. Pertumbuhan ekonomi sering dikaitkan dengan energi, dimana energi merupakan salah satu dari berbagai input penting dalam proses suatu produksi. Energi khususnya minyak memberikan dampak terhadap kegiatan ekonomi dalam skala mikro ataupun makro. Penelitian ini menggunakan data pertumbuhan ekonomi, ekspor bahan bakar, impor bahan bakar, produksi minyak mentah dan konsumsi minyak mentah di 8 (delapan) negara G20. Penelitian ini menggunakan data observasi sekunder dengan observasi 8 (delapan) negara G20 menggunakan metode Seemingly Unrelated Regression (SUR). Hasil penelitian ini adalah variabel yang berpengaruh signifikan yaitu variabel Ekspor Bahan Bakar dan Produksi Minyak Mentah berpengaruh negatif terhadap pertumbuhan ekonomi, lalu variabel Impor Bahan Bakar dan Konsumsi Minyak Mentah berpengaruh positif terhadap pertumbuhan ekonomi.

INTRODUCTION

The welfare of the people of a country has a measuring tool, namely economic growth in managing the long-term and short-term economy. Economic activity will generate more income for the community in a certain period, which is indicated through economic growth. This is made possible by the factors of production to produce an output or return through economic activities that occur due to activity (Cili & Alkhaliq, 2022). The most important macroeconomic indicators such as income and economic growth. Theoretically, the more advanced a country's economy is, the higher its total and per capita national income (assuming a growth rate greater than the population growth rate). One indicator such as Gross Domestic Product (GDP) is used as a proxy to measure a country's economic growth rate (Firdaus, 2012).

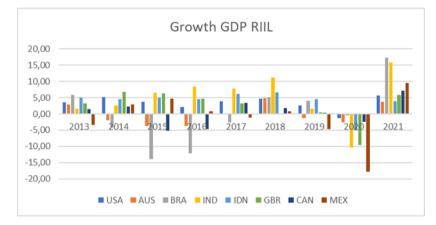


Figure Diagram 1.1, Real GDP Growth Data (processed)

Source: World Bank

Based on economic growth through Real GDP data in the form of percent units, it states that. In the highest economic growth or the country experienced an economic increase in 2021 which was dominated by these 8 (eight) countries, and the lowest or unstable economic growth turmoil in 2020 experienced by these 8 (eight) countries. It was found that the cause of the economic decline was caused by a plague or pandemic that attacked all over the world including the 8 (eight) countries, and one of the strong reasons for the Covid-19 pandemic (Ntshingila, 2023).

The G20 countries account for 85 percent of the gross world product, twothirds of the world's population and three-quarters of global trade. Reforms at the national and multinational levels are influenced and assisted in realizing its decisions. Like the G7, the Group of 20 or G20 is an informal forum. International activities and forums contribute in very significant ways to enhancing a country's image and credibility. With this participation, it is expected that a country can increase its contribution in various sectors, such as economy, health, trade, politics, and all kinds of other programs among fellow members of the G20 forum. The importance of participation, many countries around the world are involved in various forums, such as the G20 Forum, where the forum consists of countries with the largest economic levels. International trade is one of the media for a country to advance its economy which is created due to differences in absolute advantages possessed in each country. Each country is required to develop the potential of its natural and human resources in order to compete in the global economy and build its country's economy towards a better direction in the future, reflected through the level of economic growth that always increases. The level of economic growth in a country often fluctuates due to the number of exports and the number of imports carried out including from the export and import trade of crude oil.

Considerable consequences on economic activity result from fluctuations in oil prices. Differences between oil importing countries and oil exporting countries are expected to have different consequences. Good news in oil exporting countries when oil prices rise should be regarded as good news and for oil importing countries as bad news, the opposite should be expected when oil prices fall. The transmission mechanism through which oil prices impact real economic activity includes both supply and demand channels. World oil production and consumption have increased almost equally. Energy and economic growth are often associated with each other, where the process of production requires energy which is one of the important inputs. Energy, especially oil, has an impact on economic activity on a micro or macro scale.

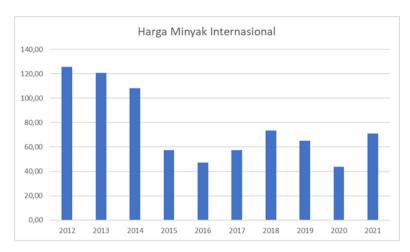


Figure Diagram 1. 2, Price Oil Data (processed)

Source: Britsh Petroleum (BP)

The approach to the value of oil price fluctuations can be observed through international oil prices by following the 2021 exchange rate. According to Britsh Petroleum (BP) data, the fluctuations in the rise and fall of international oil prices are quite significant. The highest oil price data of all data is in 2011 which is very visible in the diagram above reaching 128.01 US Dollars Per Barrel. The lowest oil price data from the data was in 1998 which reached 20.19 US Dollars Per Barrel. This can happen because the availability of crude oil is so abundant and the strength of the currency value is strong, so the event can affect fluctuations in international oil prices. A value of petroleum can be observed, one of which is to function as a vehicle or engine fuel commonly referred to as gasoline or fuel oil.

Improving economic growth performance over time requires a strong supply of energy resources. It is relevant that a large part of their national income from energy export-related revenues for energy-exporting countries is generated. Recently concluded that economic growth rates in oil-exporting countries are positively influenced by fuel mining exports. However, in the international energy market can also be considered to slow the momentum of economic growth due to a sharp decline in demand and fuel prices, reducing the possibility of achieving sustainable economic growth such undesirable macroeconomic shocks can also affect (Murshed, 2022).

Problem Formulation

Based on the background and explanation above, the following problems can be formulated:

- 1. Does the Fuel Export variable have a relationship with Economic Growth?
- 2. Does the Fuel Import variable have a relationship with Economic Growth?

- 3. Does the variable Crude Oil Production have a relationship with Economic Growth?
- 4. Does the variable Crude Oil Consumption have a relationship with Economic Growth?

Research Objectives

Based on the problems in the research, the objectives of this study are formulated as follows:

- 1. To determine the relationship of the Fuel Export variable has a relationship with Economic Growth.
- 2. To determine the relationship of the Fuel Import variable with Economic Growth.
- 3. To determine the relationship between the Crude Oil Production variable and Economic Growth.
- 4. To determine the relationship of Crude Oil Consumption variable with Economic Growth.

Research Benefits

This research is expected to provide benefits to various parties, including:

- 1. Practical uses, this research is expected to provide information and as basic evaluation material for government considerations, especially the Ministry of Energy and Mineral Resources, the Ministry of Finance, and the Ministry of Trade in determining policies in the 8 (eight) countries.
- 2. Theoretically, this research is expected to be a reference in the study of energy use, especially the fuel oil sector.

LITERATURE REVIEW AND HYPOTHESIS FORMULATION

Natural Resource Output Growth Theory (Adam Smith)

The book "An Inquiry into the Nature and Causes of the Wealth of Nations" created by Adam Smith in 1776 analyzes the reasons or how the economy of a country can grow. The aspect of output growth has variables that determine the production process of a country to produce total output, one of which is the variable of Natural Resources. According to Adam Smith (1776), natural resources are the main composition of all production activities in the economy with a limited amount. Through the production process to meet human economic needs in the sense that the economic growth process will run in the long term through the availability of existing natural resources. However, when natural resources touch low availability or run out,

it results in the production process being stopped with concomitant economic growth also stopped. This means that natural resources are the peak limit for economic growth from this situation will be known as the Stationary state (Abdul, 2002: 64).

Resource Dependence explains economic growth in a country or within the scope of a region that is highly dependent on the existence of natural resources owned by the country or region. These natural resources can be sourced through natural gas mines, minerals, petroleum, forest products, agricultural products, and so on. Countries with high resource dependency are likely to be affected by fluctuations in global commodity prices and changes in global demand for these resources. Resource dependence in economic growth has a positive or negative impact depending on how the country manages and utilizes its natural resources. If the country can manage these natural resources well, it can make a major contribution to the country's economic growth and also be useful for the country's development. Meanwhile, if the country is focused and overly dependent on natural resource exports and the country ignores economic diversification, then the country is very vulnerable to global market turmoil and it is very difficult to create sustainable economic growth. The Resource Dependence Theory states that countries can use their natural resources to promote economic growth. By selling oil on the international market, countries can generate significant revenues that can be used for investment and infrastructure development.

Economic Growth

Economic growth in a country refers to a long-term increase in the level of production and national income. Economic growth occurs when a country can increase productivity levels such as the ability of a country to produce more goods and services by utilizing available resources as efficiently as possible (Azwar, 2016). Real GDP is a measure of the production of goods and services in the economy or real GDP can be an ideal measure of economic growth for researchers. According to Mankiw (2006) real Gross Domestic Product or real GDP is used because real GDP is not affected by price changes, and changes in real GDP only describe a change in the amount of goods and services produced (Mankiw, 2006: 23).

Exports Fuel

Fuel export is an activity of sending or selling fuel from a country to another country that needs the fuel. Fuel exports are one of the vital elements of international trade in the global economy, which is useful as foreign exchange earnings for exporting countries (Deva et al., 2015). According to the Harrod-Domar theory, exports are a component of aggregate expenditure, which means that even if investment declines but exports develop, aggregate expenditure can still create a situation where the increase in capital capacity as a result of previous investment can

be fully utilized. This shows that rapid economic growth can be achieved through export development (Abdul, 2012: 137).

Imports Fuel

According to Jimmy (2013) Fuel import is an activity of buying fuel from other countries into a country for use in domestic consumption. Fuel imports occur when a country does not have or lacks sufficient fuel resources to meet internal needs within the country (Jimmy, 2013.Deva et al, 2015). According to T. Gilarso, the occurrence of higher imports than exports will cause a deficit in the balance of payments (Gilarso, 2002: 315). In the event that there is a deficit in the balance of payments, it will slow down the course of state finances and result in economic growth that will be difficult to develop or decline.

Production Crude Oil

Crude oil production is the process of extracting and collecting crude oil from underground storage. Crude oil is a fossil fuel formed from the remains of marine organisms trapped in rock layers for millions of years. Crude oil production is an important industry in many countries, contributing significantly to the global economy. The product can be distributed to various economic sectors, such as industry, transportation, and so on that rely on the product (Handar, 2014). According to M. Hasan & M. Azis, the concept of macroeconomic growth is production or out put, meaning that the production of goods and services has increased, the economy will experience growth (Hasan, 2018: 18).

Consumption Crude Oil

Crude oil consumption is the total amount of crude oil consumed by a country, region, or the entire world in a given period of time. Crude oil is a crude form often measured in volume or physical capacity, such as barrels or tons. Crude oil consumption covers the use of crude oil for various purposes, including fueling vehicles, power generation, heating, and the chemical industry. Crude oil consumption depends on the level of industrialization, economic growth, and other factors (Handar, 2014.Mitev, 2017). According to Priyono Teddy Chandra, consumption is in line with economic growth. When the shift reflects an increase in the level of welfare in society with a measure of economic growth, when consumption needs are carried out to meet the availability, especially non-food, the level of public welfare will be better and this can trigger economic growth (Priyono, 2016: 49).

RESEARCH METHODS

This research uses quantitative descriptive methodology. This method is used in this research because the data is processed statistically and in numerical form for the purpose of statistical analysis. Researchers collect data historically and observe the factors that have a relationship to the problem being researched in order to obtain data that can help in the preparation of the study. Researchers use a quantitative method approach to analyze data in the form of numbers or numerical data to analyze and draw conclusions about a phenomenon under study based on the data used, namely numerical information presented on international websites such as the World Bank and Britsh Petroleum, then the data is processed using the Stata-17 analysis tool to get answers to the hypotheses applied.

Data

This study uses quantitative data or in the form of numerical data or data in the form of numbers themselves. The quantitative data used includes fuel oil exports, fuel oil imports, crude oil production, and crude oil consumption as independent or influencing variables. While the dependent or influenced variable in this study is the real gross domestic product in 8 (eight) G20 countries in the 2012-2021 period.

Variable	Symbol	Operational Definition	Unit
Gross Domestic Product Real	Y	Economic growth at fixed prices	Dollar
Exports Fuel	X1	Fuel oil export amount	Percent
Imports Fuel	X2	Magnitude of fuel oil imports	Percent
Production Crude Oil	X3	Total crude oil production produced by the country	Barrels
Consumption Crude Oil	X4	Total consumption of crude oil consumed by the country	Barrels

Source: research data

Data Analysis Technique

Panel data analysis by combining the two data analyses, namely unit series and time series of 8 (eight) G20 countries during the 2012-2021 time span. Based on panel data, it means that panel data is data consisting of a combination of time series with cross section data. The following is a possible formulation of a panel data regression model with cross section data:

$$\begin{aligned} LnGDPriil_{it} &= \beta_0 + \beta_1 exporfuel_{it} + \beta_2 imporfuel_{it} + \beta_3 Lnproil_{it} \\ &+ \beta_4 Lnkoil_{it} + \varepsilon it \end{aligned}$$

Keterangan :

 $LnGDPriil_{it} = Gross Domestic Product Real (Dollar)$ $exporfuel_{it} = Exports Fuel (Percent)$ $imporfuel_{it} = Imports Fuel (Percent)$ $Lnproil_{it} = Production Crude Oil (Barrels)$ $Lnkoil_{it} = Consumption Crude Oil (Barrels)$ Ii = 8 (eight) G20 countries Tt = period 2012-2021a = cruen terms

 $\varepsilon = \text{error term}$

1) Unit Root Stationarity Test

Conducting stationary testing aims to prove that the data used has a stationary effect or the data is not stationary. If the data produces a non-stationary effect it does not matter as long as the variables are cointegrated, and vice versa.

2) Panel Data Regression Model

The panel data regression model consists of 3 (three) ways used to perform multiple linear regression methods on panel data, namely the Common Effect Model (CEM), Fixed Effect Model (FEM), and Random Effect Model (REM).

3) Panel Seemingly Unrelated Regression

The selection of the Seemingly Unrelated Regression (SUR) model is based on the classical assumption problems contained in the data used. classical assumption problems that exist include heteroscedasticity and multicollinearity. Based on the best model test, it shows the Fixed Effect Model (FEM) model, but the test results show that it is not good in testing, and there are classical assumption problems, therefore the suitable model or the best model to use in this study is the Seemingly Unrelated Regression (SUR) model.

4) Model Specification Test

The Model Specification Test must be carried out in order to determine the data to analyze the panel data test which should help researchers in determining the model, namely the Chow Test and the Hausman Test.

ANALYSIS AND DISCUSSION

Descriptive Analysis of Results

Statistical analysis data on the variables used in the research model which explains based on the results of data processing which has the aim of answering the questions to the research.

Variable	Obs	Mean	Std.Dev	Min	Max
Gross Domestic Product Real	80	8.33e+11	1.17e+12	2.07e+11	4.43e+12
Exports Fuel	80	15.57214	7.697571	3.842674	33.34778
Imports Fuel	80	14.1518	8.244477	4.971642	39.5181
Production Crude Oil	80	3272.872	4211.182	322.1192	17113.8
Consumption Crude Oil	80	4188.364	5516.095	915.5596	19423.63

Source: data processing results (stata 17) rearranged

Stationarity Test

In the research conducted through the model choice approach including Philips Perron (PP), Augmented Dickey Fuller (ADF), and Levin Lin Chu (LL). In testing the data through the stationary test shows the probability value below 0.1 or 0.05 or 0.01, it means that the variable is valid stationary.

Stationary Te	est level
---------------	-----------

	Level		
Variable	Philips Perron	Augmented	Levin Lin Chu
variable	(PP)	Dickey-Fuller	(LL)
		(ADF)	
Gross Domestic	2.682	1.121	-0.670
Product Real	(0.996)	(0.869)	(0.251)
Exports Fuel	2.034	0.163	-4.343
	(0.979)	(0.565)	(0.000)***
Imports Fuel	2.665	-1.177	-6.814
	(0.996)	(0.119)	(0.000)***

Production	2.796	0.036	-7.650
Crude Oil	(0.997)	(0.514)	(0.000)***
Consumption	0.393	0.238	-0.958
Crude Oil	(0.653)	(0.594)	(0.168)

Source: Data Processing Results

Stationary Test 1st different level

	Level		
Variable	Philips Perron	Augmented	Levin Lin Chu
variable	(PP)	Dickey-Fuller	(LL)
		(ADF)	
Gross Domestic	-3.568	-3.518	-8.497
Product Real	(0.000)***	(0.000)***	(0.000)***
Exports Fuel	-0.325	-2.849	-13.419
Lixports I der	(0.372)	(0.002)***	(0.000)***
Imports Fuel	-0.171	-5.492	-25.015
imports i dei	(0.432)	(0.000)***	(0.000)***
Production	-0.634	-1.215	-8.501
Crude Oil	(0.262)	(0.112)	(0.000)***
Consumption	-4.086	0.185	-0.919
Crude Oil	(0.000)***	(0.573)	(0.179)

Source: Data Processing Results

Stationary Test 2nd different level

	Level		
Variable	Philips Perron	Augmented	Levin Lin Chu
variable	(PP)	Dickey-Fuller	(LL)
		(ADF)	
Gross Domestic	2.189	-3.015	-19.053
Product Real	(0.985)	(0.001)**	(0.000)***
Exports Fuel	0.786	-1.285	-8.534
Exports I der	(0.784)	(0.099)*	(0.000)***
Imports Fuel	2.963	-2.860	-16.855
imports i dei	(0.998)	(0.002)***	(0.000)***
Production	-3.112	-0.639	-7.376
Crude Oil	(0.000)***	(0.261)	(0.000)***

Consumption	-4.692	-2.386	-8.513
Consumption	(0,000)***	(0,009)***	(0,000)***
Crude Oil	$(0.000)^{***}$	(0.008)***	(0.000)***

Source: Data Processing Results

Based on the results of the unit root test or stationarity test, researchers can do by changing the level to 2nd difference through the Levin Lin Chu (LL) approach, indicating that of the 5 (five) variables all have a significant effect with a probability value <0.05 or 5%.

Panel Test Results

The results of the panel test researchers present the results of the panel data analysis that has been carried out in order to find out and be able to compare which method is more appropriate in taking the research method.

Variable	CEM	FEM	REM	SUR
Exports Fuel	0.008	-0.002	-0.002	0.008
	(0.015)**	(0.428)	(0.407)	(0.000)***
Imports Fuel	-0.047	-0.009	-0.009	-0.047
	(0.000)***	(0.014)**	(0.011)**	(0.000)***
Production	-0.569	-0.056	-0.063	-0.569
Crude Oil	(0.000)***	(0.505)	(0.373)	(0.000)***
Consumption	1.494	0.572	0.787	1.494
Crude Oil	(0.000)***	(0.000)***	(0.000)***	(0.000)***

Panel	Test	Results
-------	------	---------

Source: Data Processing Results (stata 17) rearranged

Based on the results of the Common Effect Model (CEM), the variables of fuel exports, fuel imports, crude oil production, and crude oil consumption have a significant effect on gross domestic product (GDP). The results of the Fixed Effect Model (FEM), fuel imports and crude oil consumption variables have a significant effect on Gross Domestic Product (GDP). From the calculation of the results of the Random Effect Model (REM), we get the result that the variable Imports of Fuel and Crude Oil Consumption have a significant effect on Gross Domestic Product (GDP).

Chow test

Researchers can identify the model selection that should be used with the Chow Test, with choices including the Common Effect Model (CEM) and the Fixed Effect Model (FEM).

Test Summary	Prob.
F(4,68)=10.95	0.000

Source: Data Processing Results (stata 17) rearranged

It can be observed through the probability value which shows the number 0.000 or <0.05 so it can be interpreted that H0 is rejected and H1 in the Chow Test is selected using the Fixed Effect Model (FEM).

Hausman test

The test has the purpose of choosing between using the Fixed Effect Model (FEM) or Random Effect Model (REM) in panel analysis.

Test Summary	Chi-Sq.Statistic	Prob>Chi2
Cross-section random	37.59	0.000

Source: Data Processing Results (stata 17) rearranged

The table results presented by the researcher above show the probability value in the test results is 0.000 or <0.05. So if the probability value of the Hausman Test <0.05, it can be concluded that it rejects H0, so the right model to use is the Fixed Effect Model (FEM) model.

Seemingly Unrelated Regression (SUR)

Based on the calculations that have been tested by researchers with the estimation results through the method used is Seemingly Unrelated Regression (SUR) which has been processed by researchers using Stata 17, it is presented as follows:

Variable	Coefficient	Std. Err.	Z	P> z
Exports Fuel	0.0087886	0.0019044	4.61	0.000
Imports Fuel	-0.0473327	0.0057931	-8.17	0.000
Production Crude Oil	-0.5691059	0.0594895	-9.57	0.000
Consumption Crude Oil	1.494844	0.066759	22.39	0.000
_cons	20.00247	0.1171287	170.77	0.000

Source: Data Processing Results (stata 17) rearranged

Fuel Exports have a probability value of 0.000, which means that the

probability value is smaller than the alpha value or 0.05. It can be concluded that rejecting H0 and accepting Ha or it can be interpreted that Fuel Exports have a significant effect on Real Gross Domestic Product (GDP). Based on the coefficient value of Fuel Exports by 1% will increase Real GDP by 0.0087886% and vice versa, so that Fuel Exports have a positive influence on economic growth in 8 (eight) G20 countries.

Fuel imports have a probability value of 0.000 which has a value lower than the alpha value of 0.05. It can be concluded that this rejects H0 and Ha is accepted or it can be interpreted that Fuel Imports have a significant effect on Real Gross Domestic Product (GDP). Based on the coefficient value of Fuel Imports by 1% will reduce the country's economic growth by 0.0473327% and vice versa, from Fuel Imports has a negative and significant effect on economic growth in 8 (eight) G20 countries.

Crude Oil Production has a probability value of 0.000 or the probability value is smaller than the alpha significance of 0.05. It can be concluded that this rejects H0 and Ha is accepted or it can be interpreted that Crude Oil Production has a significant effect on Real Gross Domestic Produc (GDP). Based on the coefficient value of Crude Oil Production of 569 barrels per day will reduce the economic growth of the country and vice versa, from Crude Oil Production has a negative and significant effect on economic growth in 8 (eight) G20 countries.

Crude Oil Consumption has a probability value of 0.000 or the probability value is smaller than the significance alpha of 0.05. It can be concluded that this rejects H0 and Ha is accepted or it can be interpreted that Crude Oil Consumption has a significant effect on Real Gross Domestic Product (GDP). Based on the coefficient value of Crude Oil Consumption of 1,494 barrels per day, it will increase the country's economic growth and vice versa, from Crude Oil Consumption has a positive effect on economic growth in 8 (eight) G20 countries.

DISCUSSION

Exports themselves have a contribution to economic growth in a country through export activities can encourage growth in economic sectors that are related to one of them, the production of goods, especially from the oil mining sector that wants to be exported. For countries that have abundant reserve sources, namely fuel reserves, they can be utilized by exporting these fuels as the main source of income. When a country that has the potential as a fuel exporter to the international market, the country will get revenue that can be used to fund economic development such as health development, infrastructure, education, and many more. This can improve the welfare of the people in the country and will be followed by an increase in economic growth in the country itself (Muntasir Murshed, 2022.Abdul, 2012).

Imports can affect a country's trade balance, when a country imports excessively or imports more goods than it exports, it will have a deficit in the trade balance and that can slow down the country's economic growth. Importing fuel excessively or for certain countries relying heavily on fuel imports can lead to a deficit in the trade balance. When a country runs a sustained trade deficit, it destabilizes the economy within the country and eliminates opportunities to add value to fuel products before they can be sold domestically or abroad. This can affect economic growth in the long term (Fadila, 2021.Dwi Kartikasari, 2017).

The role of production on economic growth as a determinant of the wheels of trade, through domestic and foreign trade is a driving factor of trade and this can generate domestic and foreign income which is useful as a stimulant to economic growth (Noparima & Sutrisna, 2017). Production restrictions are also needed to anticipate a significant decline in prices and this does not escape the production of raw materials from natural resources which can have an effect on the sustainability of nature itself. When crude oil production exceeds the limit, it will result in a decrease in economic growth in the country. Overproduction of crude oil will result in a fall in the price of crude oil, which can threaten the uncontrollability of the price of crude oil produced which results in reducing the exchange rate. As falling crude oil prices lower the production costs of various sectors of the economy, the impact can undermine the purchasing power of the currency itself and will weaken the exchange rate. After that, economic growth will decline because imports will be more expensive due to the weakened exchange rate caused by overproduction (Yang et al., 2022.Karahan, 2020).

The role of consumption is very important in determining the demand for goods and services, it affects production and economic growth. It is through the consumption of crude oil that crude oil producers can benefit both parties. Crude oil consumption has a major role in the industrial sector to run the industrial activities themselves and can contribute to the economic growth of the country. In addition, crude oil producers will get revenue from the oil sector, this revenue can be used as funding for development programs to improve people's welfare or increase the country's economic growth (Uzma, 2022.Rumbia et al, 2022).

CONCLUSIONS, LIMITATIONS AND SUGGESTIONS

Conclusion

- 1) The fuel export variable has a significant and positive influence on economic growth (Real GDP). This means that as fuel export activities or activities increase, economic growth will increase.
- 2) The fuel import variable has a significant and negative influence on economic growth (Real GDP). This means that when fuel import activities or activities increase, economic growth will decrease further.
- 3) The Crude Oil Production variable has a significant and negative influence on economic growth (Real GDP). This means that when a country produces excess crude oil or increases crude oil production rates, economic growth will decrease.
- 4) Crude oil consumption variable influences significantly and positively on economic growth (Real GDP). That is, when the value of crude oil consumption increases, economic growth will also increase.

Research Limitations

Based on the results of research that researchers have conducted, this research still has limitations in the variables applied in this research that can be presented, including fuel exports, fuel imports, crude oil production and crude oil consumption. So that the analysis of the country's economic growth against fluctuations in international oil trade is not totally comprehensive.

Suggestion

For G20 Regional Governments, Governments in the G20 Region need to monitor restrictions on excessive crude oil production, the consequences of overproduction will cause a domino effect on the country's economy. By limiting crude oil production, the country will have abundant natural resource reserves and can be a good source of foreign exchange.

For the G20 Area Industry, the Industry must be able to allocate crude oil consumption so that it is not only used as an energy source to carry out industrial activities, but crude oil can be reprocessed to become fuel that can be used by all parties participating in developing the economy. The benefit that will be obtained is that it can increase income for the related industry, if necessary, increase fuel exports so that state income from exports increases and can increase economic growth.

For Communities in the G20 Region, Communities in the G20 Region need to limit the use of fuel so that there is no unbalanced supply which results in countries

importing fuel that exceeds the limit due to a lack of supply to meet the needs of moving the wheels of the country's trade.

For the Audience, the limitations in this research are the use of theory or the use of variables such as fuel exports, fuel imports, crude oil production, crude oil consumption, and exchange rates (Exchange Rates) which can influence economic growth (Real GDP). The researcher's hope for future research or researchers can develop further, so that the latest research can get better results.

LITERATURE

- Abdul Hakim. 2002. "EKONOMI PEMBANGUNAN". Ed. 1, Yogyakarta: EKONISIA.
- Azwar. (2016). "Allocative Role of Government through Procurement of Goods/Services and Its Impact on Indonesian Economy".Kajian Ekonomi Keuangan (Agustus), hal 149-167.
- Cili, M. R., dan Alkhaliq, B. 2022. "Economic Growth and Inflation: Evidence from Indonesia". Jurnal Ilmu Ekonomi, hal. 145–160.
- Firdaus. 2012. "ANALISIS PENDAPATAN, PERTUMBUHAN DAN STRUKTUR EKONOMI NASIONAL". Jurnal Plano Madani (Januari), hal. 63-73.
- Handar Aula Saputro. 2014. "Economics Development Analysis Journal ANALISIS PRODUKSI MINYAK MENTAH INDONESIA DENGAN PENDEKATAN ERROR CORRECTION MODEL". Economics Development Analysis Journal (April), hal. 36-47.
- I G N Deva Arya Reditya Marciawan, dan Ida Bagus Darsana. 2015. "FAKTOR-FAKTOR YANG MEMENGARUHI EKSPOR NETO BAHAN BAKAR MINYAK DI INDONESIA PERIODE 1991-2012". E-Jurnal EP Unud (Maret), hal. 190-199.
- Jimmy Benny. 2013." EKSPOR DAN IMPOR PENGARUHNYA TERHADAP POSISI CADANGAN DEVISA DI INDONESIA".Jurnal EMBA (Desember), hal. 1406–1415.
- Mitev, V. 2017. ANALYSIS OF THE PRODUCTION, CONSUMPTION, AND PRICES OF CRUDE OIL. JOURNAL OF MINING AND GEOLOGICAL SCIENCES, hal.11-16.
- Murshed, M. 2022. "The impacts of fuel exports on sustainable economic growth: The importance of controlling environmental pollution in Saudi Arabia". Energy Reports, hal. 13708–13722.
- N. Gregory Mankiw. 1867. "MAKROEKONOMI". Jakarta: ERLANGGA.
- Ntshingila, M. L. 2023. "Analysing the effect of Covid-19 and fuel price on the South African motor vehicles export". International Journal of Research in Business and Social Science, hal. 148-154.
- Priyono, Zainuddin I. 2012. Teori Ekonomi. Dharma Ilmu.
- T. Gilarso. 2002. "PENGANTAR ILMU EKONOMI MAKRO". Yogyakarta: KANISIUS.

APPENDIX

Data							
countries	code	tahun	gdpriil	expor_fuel	impor_fuel	proil	koil
USA	1	2012	3298732178000,00	10,06	18,64	8931,27	17581,03
USA	1	2013	3416444750000,00	10,76	16,76	10103,36	17992,00
USA	1	2014	3591825301000,00	10,99	14,85	11806,65	18111,09
USA	1	2015	3722979000000,00	8,00	8,66	12783,34	18499,21
USA	1	2016	3802207075000,00	7,58	7,26	12353,66	18592,69
USA	1	2017	3948265313000,00	10,51	8,48	13139,89	18845,19
USA	1	2018	4132056059000,00	13,53	9,25	15309,99	19416,59
USA	1	2019	4240908075000,00	14,20	8,18	17113,80	19423,63
USA	1	2020	4188560174000,00	12,72	5,40	16457,70	17183,32
USA	1	2021	4428099927000,00	15,92	7,63	16585,25	18684,48
AUS	2	2012	364330365393,27	28,45	16,87	472,33	1000,69
AUS	2	2013	374864596984,51	25,87	17,42	400,56	1031,09
AUS	2	2014	367783447691,31	26,60	15,83	420,26	1025,15
AUS	2	2015	354204176720,19	25,29	10,84	378,48	1015,17
AUS	2	2016	341301156652,76	25,60	9,29	353,22	1016,35
AUS	2	2017	341167434722,65	30,32	10,38	322,12	1062,68
AUS	2	2018	357681711028,31	23,07	13,31	341,84	1075,58
AUS	2	2019	353198587805,78	18,93	12,59	452,54	1064,41
AUS	2	2020	343877787214,61	13,91	8,13	452,82	915,56
AUS	2	2021	356886256575,50	27,71	10,27	435,18	943,08
BRA	3	2012	368533509311,92	11,02	18,48	2144,85	2518,81
BRA	3	2013	390008697978,12	7,66	19,50	2109,94	2655,93
BRA	3	2014	373534462804,16	9,35	20,09	2341,37	2728,57
BRA	3	2015	321439478192,91	7,36	15,56	2524,99	2487,94
BRA	3	2016	282449427396,91	6,45	12,35	2607,42	2370,25
BRA	3	2017	275226191286,77	8,71	14,70	2731,24	2406,57
BRA	3	2018	289625360409,93	12,77	15,11	2690,96	2293,32
BRA	3	2019	301285872863,28	13,71	13,86	2889,72	2303,48
BRA	3	2020	299717122812,88	11,89	10,08	3030,27	2133,77
BRA	3	2021	351348215054,74	13,66	13,60	2987,16	2251,77
IND	4	2012	544473773375,58	18,78	37,97	925,71	3673,72
IND	4	2013	552977385036,43	20,67	39,52	925,89	3716,70
IND	4	2014	567372754661,22	19,63	38,51	905,39	3832,11
IND	4	2015	604426918417,25	11,87	26,78	893,46	4147,37
IND	4	2016	655552067838,94	10,64	25,04	873,92	4544,01
IND	4	2017	706699182669,25	12,19	27,72	884,66	4724,32
IND	4	2018	785871176756,20	15,07	33,19	869,39	4974,04

			T				
IND	4	2019	798075431661,25	13,78	31,88	826,41	5149,82
IND	4	2020	715041633195,75	10,03	28,36	770,69	4701,40
IND	4	2021	828023933517,91	14,28	29,87	746,08	4878,18
IDN	5	2012	245242940621,47	33,35	22,31	916,82	1611,60
IDN	5	2013	257530294374,66	31,44	24,41	870,99	1572,17
IDN	5	2014	268988067974,97	29,04	24,68	846,98	1572,40
IDN	5	2015	282462859590,97	23,04	17,55	837,65	1505,06
IDN	5	2016	295097786221,16	19,29	14,20	873,25	1454,09
IDN	5	2017	313258027307,63	21,85	16,24	837,30	1564,94
IDN	5	2018	334170650615,19	23,31	16,74	807,56	1615,80
IDN	5	2019	349049206873,40	20,34	13,72	780,66	1578,19
IDN	5	2020	331732642745,20	15,63	11,15	742,03	1398,50
IDN	5	2021	344348989962,65	19,48	14,70	691,55	1471,50
GBR	6	2012	433930335083,34	13,87	13,95	947,26	1507,82
GBR	6	2013	448170112608,38	11,42	13,53	865,34	1489,95
GBR	6	2014	478742084524,93	10,90	11,81	853,55	1491,06
GBR	6	2015	509095258810,75	7,02	8,09	963,53	1537,98
GBR	6	2016	533135183470,67	6,26	6,28	1014,81	1586,94
GBR	6	2017	550713685454,64	7,97	8,12	1005,43	1593,54
GBR	6	2018	550364719634,31	9,46	10,09	1091,76	1568,71
GBR	6	2019	553373864244,42	8,60	8,19	1118,07	1522,00
GBR	6	2020	500764372454,46	7,06	5,31	1048,72	1171,87
GBR	6	2021	530235436912,03	7,77	10,27	874,15	1236,28
CAN	7	2012	377551229932,86	25,62	11,18	3740,24	2426,03
CAN	7	2013	383021626767,12	26,36	10,95	4000,41	2422,27
CAN	7	2014	391640469360,78	28,89	10,37	4270,53	2420,13
CAN	7	2015	371236410475,86	20,60	7,02	4388,14	2442,79
CAN	7	2016	353960551589,24	17,63	6,31	4463,64	2453,38
CAN	7	2017	365806294808,12	21,95	6,99	4813,03	2424,31
CAN	7	2018	372458334043,36	24,02	7,95	5243,88	2500,60
CAN	7	2019	373410312565,30	24,08	7,33	5372,42	2491,24
CAN	7	2020	364302193501,31	19,33	4,97	5130,30	2191,11
CAN	7	2021	390300234382,38	25,89	6,21	5428,81	2228,66
MEX	8	2012	252239923196,92	14,06	8,99	2911,10	2083,00
MEX	8	2013	243788270627,73	12,81	8,63	2882,02	2034,16
MEX	8	2014	250898263199,06	10,41	7,49	2791,50	1959,69
MEX	8	2015	262858210470,52	5,89	6,34	2593,04	1939,29
MEX	8	2016	265029410430,37	4,82	6,20	2460,71	1950,18
MEX	8	2017	261908440017,88	5,51	8,21	2227,45	1883,23
MEX	8	2018	264026588792,13	6,57	9,83	2071,58	1835,96

MEX	8	2019	251527684928,90	5,32	8,83	1920,53	1698,20
MEX	8	2020	206974164231,69	3,84	6,48	1911,59	1313,00
MEX	8	2021	226602846798,97	5,54	8,36	1927,65	1350,43

Summary

. sum gdpriil expor_fuel impor_fuel proil koil

Variable	•	Obs	Mean	Std. dev.	Min	Max
gdpriil	L	80	8.33e+11	1.17e+12	2.07e+11	4.43e+12
expor_fuel		80	15.57214	7.697571	3.842674	33.34778
impor_fuel		80	14.1518	8.244477	4.971642	39.5181
proil		80	3272.872	4211.182	322.1192	17113.8
koil		80	4188.364	5516.095	915.5596	19423.63
~	- 00		11/07			

Common Effect Model (CEM)

. reg log_riil expor_fuel impor_fuel logproil logkoil

Source	SS	df	MS		er of obs	= 80
Model Residual	50.9888019 3.82195237	4 75	12.7472005 .050959365	R-squ		= 250.14 = 0.0000 = 0.9303 = 0.9266
Total	54.8107543	79	.693807016	-		= .22574
log_riil	Coefficient	Std. err.	t	P> t	[95% conf	f. interval]
expor_fuel impor_fuel logproil logkoil _cons	.0087886 0473327 5691059 1.494844 20.00247	.0035333 .0046538 .0537755 .0638493 .2636308	-10.17 -10.58 23.41	0.015 0.000 0.000 0.000 0.000	.00175 0566035 6762321 1.36765 19.47729	.0158272 0380618 4619797 1.622039 20.52765

Random Effect Model (REM)

. xtreg log_riil expor_fuel impor_fuel logproil logkoil, re

Random-effects GLS regression Group variable: code					of obs = of groups =	80 8
R-squared: Within = Between = Overall =	0.8517			Obs per	group: min = avg = max =	10 10.0 10
corr(u_i, X) =	= 0 (assumed)			Wald ch Prob >		109.91 0.0000
log_riil	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
expor_fuel impor_fuel logproil logkoil _cons	00285 0095541 0635381 .7877761 21.41627	.0712577	-0.89	0.407 0.011 0.373 0.000 0.000	2032006	0022201 .0761244
sigma_u sigma_e rho	.21194943 .0817884 .87039146	(fraction o	of varia	nce due t	o u_i)	

Fixed Effect Model (FEM)

. xtreg log_riil expor_fuel impor_fuel logproil logkoil, fe

Fixed-effects Group variable		ression			of obs = of groups =	80 8
R-squared: Within : Between : Overall :	= 0.8573			Obs per	group: min = avg = max =	10 10.0 10
corr(u_i, Xb)	= 0.7134			F(4,68) Prob > F		
log_riil	Coefficient	Std. err.	t	P> t	[95% conf	. interval]
expor_fuel impor_fuel logproil logkoil _cons	0567873	.0034674 .0036405 .0846989 .1048306 .9985514	-2.53 -0.67	0.428 0.014 0.505 0.000 0.000	0164639 2258014	0019347 .1122267 .781974
sigma_u sigma_e rho	.47852464 .0817884 .97161626	(fraction	of variar	nce due to) u_i)	

F test that all u_i=0: F(7, 68) = 71.91

Prob > F = 0.0000

Uji Chow

. xtreg log_riil expor_fuel impor_fuel logproil logkoil, fe

ixed-effects	(within) regr	ression		Number o	f obs	=	86
Group variable: code				Number o	f group	DS =	8
-squared:				Obs per	group:		
Within	= 0.3918				- · ·	nin =	16
Between	= 0.8573				a	avg =	10.0
Overall	= 0.8481				n	= x6n	10
				F(4,68)		=	10.95
orr(u i, Xb)	= 0.7134			Prob > F		=	0.0000
log_riil	Coefficient	Std. err.	t	P> t	[95%	conf.	interval]
log_riil expor_fuel	Coefficient	Std. err.	t -0.80	P> t 0.428	•		
			-0.80		0096	5818	.0041565
expor_fuel	0027627	.0034674 .0036405	-0.80	0.428	0096 0164	5818 4639	.0041565
expor_fuel impor_fuel	0027627 0091993	.0034674 .0036405 .0846989	-0.80 -2.53 -0.67	0.428 0.014	0096 0164 2258	5818 4639	.0041565 0019347 .1122267
expor_fuel impor_fuel logproil	0027627 0091993 0567873	.0034674 .0036405 .0846989	-0.80 -2.53 -0.67	0.428 0.014 0.505	0096 0164 2258 .3636	5818 4639 3014	.0041565 0019347 .1122267 .781974
expor_fuel impor_fuel logproil logkoil	0027627 0091993 0567873 .5727878	.0034674 .0036405 .0846989 .1048306	-0.80 -2.53 -0.67 5.46	0.428 0.014 0.505 0.000	0096 0164 2258 .3636	5818 4639 3014 5015	.0041565 0019347 .1122267 .781974
expor_fuel impor_fuel logproil logkoil _cons	0027627 0091993 0567873 .5727878 23.04734	.0034674 .0036405 .0846989 .1048306	-0.80 -2.53 -0.67 5.46	0.428 0.014 0.505 0.000	0096 0164 2258 .3636	5818 4639 3014 5015	.781974

Hausman FE RE

. hausman fe re

	—— Coeffi	cients ——		
	(b) fe	(B) re	(b-B) Difference	sqrt(diag(V_b-V_B) Std. err.
expor_fuel	0027627	00285	.0000873	.0004333
impor fuel	0091993	0095541	.0003548	
logproil	0567873	0635381	.0067508	.0457848
logkoil	.5727878	.7877761	2149883	.0566363

b = Consistent under H0 and Ha; obtained from xtreg.
B = Inconsistent under Ha, efficient under H0; obtained from xtreg.

Test of H0: Difference in coefficients not systematic

chi2(4) = (b-B)'[(V_b-V_B)^(-1)](b-B) = 37.59 Prob > chi2 = 0.0000

(V_b-V_B is not positive definite) Seemingly Unrelated Regression (SUR)

. xtpcse log_riil expor_fuel impor_fuel logproil logkoil, nmk

Linear regression, correlated panels corrected standard errors (PCSEs)

Group variable: Time variable: Panels:	code tahun correlated (bai	,	Number of obs Number of group Obs per group:	= 5 =	80 8
Autocorrelation:	no autocorrelat	tion	m	in =	10
			a	vg =	10
			m	ax =	10
Estimated covaria	inces =	36	R-squared	=	0.9303
Estimated autocor	relations =	0	Wald chi2(4)	=	18277.28
Estimated coeffic	ients =	5	Prob > chi2	=	0.0000

	Pa	nel-correct	ed			
log_riil	Coefficient	std. err.	z	P> z	[95% conf.	interval]
expor fuel	.0087886	.0019044	4.61	0.000	.005056	.0125212
impor_fuel	0473327	.0057931	-8.17	0.000	0586869	0359784
logproil	5691059	.0594895	-9.57	0.000	6857031	4525087
logkoil	1.494844	.066759	22.39	0.000	1.363999	1.62569
_cons	20.00247	.1171287	170.77	0.000	19.7729	20.23203

Uji Stationer Level

Level		
PP	ADF	LL
GDP Riil	GDP Riil	GDP Riil
Null Hypothesis: Unit root	Null Hypothesis: Unit root	Null Hypothesis: Unit root (common unit root
(individual unit root process)	(individual unit root process)	process)
Series: LOG_RIIL	Series:	Series: LOG_RIIL
Date: 06/20/23 Time:	LOG_RIIL	Date: 06/20/23 Time: 12:00
12:13	Date: 06/20/23	Sample: 2012 2021
Sample: 2012 2021	Time: 12:19	Exogenous variables: Individual effects, individual
Exogenous variables:	Sample: 2012	linear trends
Individual effects, individual	2021	User-specified lags: 1
linear	Exogenous variables: Individual	Newey-West automatic bandwidth selection and
trends	effects, individual linear trends	Bartlett kernel
Newey-West automatic	User-specified	Total (balanced) observations:
bandwidth selection and	lags: 1	64
Bartlett kernel	Total (balanced)	Cross-sections included: 8
Total (balanced)	observations: 64	
observations: 72	Cross-sections	Statisti Prob.*
Cross-sections	included: 8	Method c *
included: 8		-
	Statisti Prob.*	0.6700 0.251
Prob.*	Method c *	Levin, Lin & Chu t* 3 4
Method Statistic *	ADF - Fisher 14.739 0.543	
PP - Fisher 0.995	Chi-square 0 8	** Probabilities are computed assuming asympttic
Chi-square 4.96257 9	ADF - Choi Z- 1.1214 0.869	normality
PP - Choi Z- 0.996	stat 6 0	Intermediate results on
stat 2.68295 4	** Probabilities for Fisher tests	LOG_RIIL
** D 1 1 11. 6 D' 1	are computed using an	
** Probabilities for Fisher	asymptotic Chi	VariancHAC
tests are computed using an	-square distribution. All	Cross 2nd Stagee of Max Band-
asymptotic Chi-square distribution. All other tests	other tests assume asymptotic	sectio Coefficie Ob
assume asymptotic	normality.	n nt of Reg Dep. Lag Lag width s
normality.		4.E-
normanty.	Intermediate ADF test	USA -2.06167 0.0001 05 1 1 6.0 8
Intermediate Phillips-Perron	results LOG_RIIL	0.000
test results LOG_RIIL		AUS -0.90105 0.0004 1 1 1 8.0 8
	Cross	0.004
Cross	sectio Lag Max	BRA -0.21999 0.0025 4 1 1 3.0 8
sectio Bandwidt	n Prob. Lag Obs	0.000
n Prob. h Obs	0.365	IND -2.14410 0.00147 1 1 8.0 8
0.344	USA 1 1 1 8	0.000
USA 0 8.0 9	0.559	IDN -4.33560 0.00012 1 1 7.0 8
0.862	AUS 8 1 1 8	0.000
AUS 3 4.0 9	0.938	GBR 0.43884 0.0009 6 1 1 3.0 8
0.993	BRA 3 1 1 8	0.000
BRA 3 3.0 9	0.162	CAN -1.03170 0.0009 2 1 1 8.0 8
0.533	IND 6 1 1 8	0.000
IND 9 3.0 9	0.028	MEX -1.12104 0.0033 7 1 1 8.0 8
0.899	IDN 8 1 1 8	
IDN 8 2.0 9	0.995	Coefficie SE Ob
GBR 0.883 1.0 9	GBR 8 1 1 8	nt t-Stat Reg mu* sig* s

	1	T
0	0.781	Poole 1.00
0.874	CAN 8 1 1 8	d -0.97541 -4.654 1.346 -0.703 3 64
CAN 3 3.0 9	0.901	
0.765	MEX 6 1 1 8	
MEX 2 3.0 9		
Ekspor Bahan Bakar	Ekspor Bahan Bakar	Ekspor Bahan Bakar
Null Hypothesis: Unit root	Null Hypothesis: Unit root	Null Hypothesis: Unit root (common unit root
(individual unit root process)	(individual unit root process)	process)
Series:	Series:	Series: EXPOR FUEL
EXPOR_FUEL	EXPOR_FUEL	Date: 06/20/23 Time: 12:01
Date: 06/20/23 Time:	Date: 06/20/23	Sample: 2012 2021
12:13	Time: 12:20	Exogenous variables: Individual effects, individual
Sample: 2012 2021	Sample: 2012	linear trends
Exogenous variables:	2021	User-specified lags: 1
Individual effects, individual	Exogenous variables: Individual	Newey-West automatic bandwidth selection and
linear	effects, individual linear trends	Bartlett kernel
Trends	User-specified	Total (balanced) observations:
Newey-West automatic	lags: 1	64
bandwidth selection and	Total (balanced)	Cross-sections included: 8
Bartlett kernel	observations: 64	Statisti Prob.*
Total (balanced) observations: 72	Cross-sections included: 8	
Cross-sections		Method c *
included: 8	Statisti Prob.*	4.3438 0.000
	Method c *	Levin, Lin & Chu t* 1 0
Prob.*	ADF - Fisher 10.674 0.829	
Method Statistic *	Chi-square 5 1	** Probabilities are computed assuming asympotic
PP - Fisher 0.886	ADF - Choi Z- 0.1636 0.565	normality
Chi-square 9.61380 0	stat 1 0	
PP - Choi Z- 0.979		Intermediate results on
stat 2.03417 0	** Probabilities for Fisher tests	EXPOR_FUEL
	are computed using an	
** Probabilities for Fisher	asymptotic Chi	VariancHAC
tests are computed using an	-square distribution. All	Cross 2nd Stagee of Max Band-
asymptotic Chi-square	other tests assume asymptotic	sectio Coefficie Ob
distribution. All other tests	normality.	n nt of Reg Dep. Lag Lag width s 0.497
assume asymptotic normality.	Intermediate ADF test	USA -0.90669 1.7644 6 1 1 8.0 8
normanty.	results EXPOR FUEL	16.40
Intermediate Phillips-Perron		AUS -1.85388 14.566 0 1 1 3.0 8
test results EXPOR_FUEL	Cross	0.778
	sectio Lag Max	BRA -0.81465 2.3447 3 1 1 8.0 8
Cross	n Prob. Lag Obs	1.570
sectio Bandwidt	0.452	IND -1.03890 4.8656 9 1 1 8.0 8
n Prob. h Obs	USA 6 1 1 8	1.107
0.921	0.364	IDN -1.07761 4.48816 1 1 8.0 8
USA 8 8.0 9	AUS 9 1 1 8	0.418
0.668	0.687	GBR -0.76793 1.3918 2 1 1 8.0 8
AUS 9 8.0 9	BRA 4 1 1 8	2.209
0.055	0.469	CAN -1.25586 10.011 6 1 1 8.0 8
BRA 9 8.0 9	IND 8 1 1 8	0.314 MEX 0.64476 1.1543 3 1 1 8.0 8
0.918 IND 8 7.0 9	0.458 IDN 0 1 1 8	MEX -0.64476 1.1543 3 1 1 8.0 8
1.0 9	IDN 0 1 1 8	

		
0.931	0.597	
IDN 8 8.0 9	GBR 4 1 1 8	Coefficie SE Ob
0.351	0.576	nt t-Stat Reg mu* sig* s
GBR 6 8.0 9	CAN 0 1 1 8	Poole 1.00
0.800	0.572	d -0.91038 -7.404 1.041 -0.703 3 64
CAN 2 7.0 9	MEX 1 1 1 8	
0.983		
MEX 9 8.0 9		
Impor Bahan Bakar	Impor Bahan Bakar	Impor Bahan Bakar
Null Hypothesis: Unit root	Null Hypothesis: Unit root	Null Hypothesis: Unit root (common unit root
(individual unit root process)	(individual unit root process)	process)
Series:	Series:	Series: IMPOR_FUEL
IMPOR_FUEL	IMPOR_FUEL	Date: 06/20/23 Time: 12:02
Date: 06/20/23 Time:	Date: 06/20/23	Sample: 2012 2021
12:13	Time: 12:20	Exogenous variables: Individual effects, individual
Sample: 2012 2021	Sample: 2012	linear trends
Exogenous variables:	2021	User-specified lags: 1
Individual effects, individual	Exogenous variables: Individual	Newey-West automatic bandwidth selection and
linear	effects, individual linear trends	Bartlett kernel
trends	User-specified	Total (balanced) observations:
Newey-West automatic	lags: 1	64
bandwidth selection and	Total (balanced)	Cross-sections included: 8
Bartlett kernel	observations: 64	
Total (balanced)	Cross-sections	Statisti Prob.*
observations: 72	included: 8	Method c *
Cross-sections		-
included: 8	Statisti Prob.*	6.8145 0.000
	Method c *	Levin, Lin & Chu t* 2 0
Prob.*	ADF - Fisher 19.195 0.258	
Method Statistic *	Chi-square 7 6	** Probabilities are computed assuming asympotic
PP - Fisher 0.995	-	normality
Chi-square 5.07348 4	ADF - Choi Z- 1.1778 0.119	
PP - Choi Z- 0.996	stat 7 4	Intermediate results on
stat 2.66598 2		IMPOR_FUEL
** Dechahilition for Eichen	** Probabilities for Fisher tests	VerienellAC
** Probabilities for Fisher	are computed using an	VariancHAC
tests are computed using an	asymptotic Chi	Cross 2nd Stagee of Max Band-
asymptotic Chi-square	-square distribution. All	sectio Coefficie Ob
distribution. All other tests	other tests assume asymptotic	n nt of Reg Dep. Lag Lag width s
assume asymptotic	normality.	0.546
normality.	Internet dists ADE test	USA -0.72732 2.7229 9 1 1 8.0 8
Internet dists Dhilling Downer	Intermediate ADF test	0.890
Intermediate Phillips-Perron	results IMPOR_FUEL	AUS -1.10055 2.3256 9 1 1 8.0 8
test results IMPOR_FUEL		0.941
	Cross	BRA -1.67230 2.3620 5 1 1 8.0 8
Cross	sectio Lag Max	3.171
sectio Bandwidt	n Prob. Lag Obs	IND -0.92369 7.96347 1 1 8.0 8
n Prob. h Obs	0.686	1.670
0.966	USA 3 1 1 8	IDN -1.47210 2.93621 1 1 8.0 8
USA 2 8.0 9	0.274	0.804
0.831	0.274 AUS 4 1 1 8	0.804 GBR -1.08054 3.1904 3 1 1 7.0 8
	0.274	0.804

5	0.338	0.333
0.896	IND 6 1 1 8	MEX -1.33698 0.4756 2 1 1 8.0 8
IND 8 7.0 9	0.236	
0.731	IDN 0 1 1 8	Coefficie SE Ob
IDN 0 8.0 9	0.606	nt t-Stat Reg mu* sig* s
0.987	GBR 0 1 1 8	Poole 1.00
GBR 1 8.0 9	0.417	d -1.14449 -9.820 1.042 -0.703 3 64
0.829	CAN 9 1 1 8	
CAN 4 8.0 9	0.071	
0.545	MEX 9 1 1 8	
MEX 2 8.0 9		
Produksi Minyak Mentah	Produksi Minyak Mentah	Produksi Minyak Mentah
Null Hypothesis: Unit root	Null Hypothesis: Unit root	Null Hypothesis: Unit root (common unit root
(individual unit root process)	(individual unit root process)	process)
Series: LOGPROIL	Series:	Series: LOGPROIL
Date: 06/20/23 Time:	LOGPROIL	Date: 06/20/23 Time: 12:03
12:14	Date: 06/20/23	Sample: 2012 2021
Sample: 2012 2021	Time: 12:20	Exogenous variables: Individual effects, individual
Exogenous variables:	Sample: 2012	linear trends
Individual effects, individual	2021	User-specified lags: 1
linear	Exogenous variables: Individual	Newey-West automatic bandwidth selection and
Trends	effects, individual linear trends	Bartlett kernel
Newey-West automatic	User-specified	Total (balanced) observations:
bandwidth selection and	lags: 1	64
Bartlett kernel	Total (balanced)	Cross-sections included: 8
Total (balanced)	observations: 64	
observations: 72	Cross-sections	Statisti Prob.*
Cross-sections	included: 8	Method c *
included: 8		-
	Statisti Prob.*	7.6506 0.000
Prob.*	Method c *	Levin, Lin & Chu t* 7 0
Method Statistic *	ADF - Fisher 28.053 0.031	
PP - Fisher 0.999	Chi-square 7 2	** Probabilities are computed assuming asympotic
Chi-square 3.26573 7	ADF - Choi Z- 0.0363 0.514	normality
PP - Choi Z- 0.997	stat 6 5	
stat 2.79613 4		Intermediate results on
	** Probabilities for Fisher tests	LOGPROIL
** Probabilities for Fisher	are computed using an	
tests are computed using an	asymptotic Chi	VariancHAC
asymptotic Chi-square	-square distribution. All	Cross 2nd Stagee of Max Band-
distribution. All other tests	other tests assume asymptotic	sectio Coefficie Ob
assume asymptotic	normality.	n nt of Reg Dep. Lag Lag width s
normality.		0.000
	Intermediate ADF test	USA -1.73325 0.0003 6 1 1 8.0 8
Intermediate Phillips-Perron	results LOGPROIL	0.001
test results LOGPROIL		AUS -0.59320 0.0089 8 1 1 8.0 8
	Cross	0.000
Cross	sectio Lag Max	BRA -0.93889 0.0004 2 1 1 8.0 8
sectio Bandwidt	n Prob. Lag Obs	8.E-
n Prob. h Obs	0.002	IND -0.87017 0.0003 05 1 1 6.0 8
0.843	USA 5 1 1 8	0.000
USA 9 8.0 9	0.805	IDN -0.39442 0.0005 7 1 1 2.0 8
AUS 0.650 6.0 9	AUS 4 1 1 8	GBR -0.38323 0.0031 0.007 1 1 2.0 8

1	O
-	2

3	0.515	4
0.685	BRA 4 1 1 8	0.000
BRA 4 3.0 9	0.805	CAN -2.30206 8.E-05 2 1 1 8.0 8
0.941	IND 1 1 1 8	0.001
IND 2 2.0 9	0.932	MEX -0.74243 0.0005 6 1 1 1.0 8
0.925	IDN 1 1 1 8	
IDN 7 1.0 9	0.956	Coefficie SE Ob
0.864	GBR 3 1 1 8	nt t-Stat Reg mu* sig* s
GBR 0 1.0 9	0.001	Poole 1.00
0.810	CAN 3 1 1 8	d -1.50675 -11.615 1.300-0.703 3 64
CAN 9 8.0 9	0.831	
0.850	MEX 1 1 1 8	
MEX 9 0.0 9		
Konsumsi Minyak Mentah	Konsumsi Minyak Mentah	Konsumsi Minyak Mentah
Null Hypothesis: Unit root	Null Hypothesis: Unit root	Null Hypothesis: Unit root (common unit root
(individual unit root process)	(individual unit root process)	process)
Series: LOGKOIL	Series:	Series: LOGKOIL
Date: 06/20/23 Time:	LOGKOIL	Date: 06/20/23 Time: 12:03
12:14	Date: 06/20/23	Sample: 2012 2021
Sample: 2012 2021	Time: 12:21	Exogenous variables: Individual effects, individual
Exogenous variables:	Sample: 2012	linear trends
Individual effects, individual	2021	User-specified lags: 1
linear	Exogenous variables: Individual	Newey-West automatic bandwidth selection and
trends	effects, individual linear trends	Bartlett kernel
Newey-West automatic	User-specified	Total (balanced) observations:
bandwidth selection and	lags: 1	64
Bartlett kernel	Total (balanced)	Cross-sections included: 8
Total (balanced)	observations: 64	
observations: 72	Cross-sections	Statisti Prob.*
Cross-sections	included: 8	Method c *
included: 8		
	Statisti Prob.*	0.9587 0.168
Prob.*	Method c *	Levin, Lin & Chu t* 3 8
Method Statistic *	ADF - Fisher 16.324 0.430	
PP - Fisher 0.305	Chi-square 2 6	** Probabilities are computed assuming asympotic
Chi-square 18.3162 7	ADF - Choi Z- 0.2382 0.594	normality
PP - Choi Z- 0.653	stat 1 1	normanty
stat 0.39347 0	<u> </u>	Intermediate results on
Stat 0.37547 0	** Probabilities for Fisher tests	LOGKOIL
** Probabilities for Fisher	are computed using an	
tests are computed using an	asymptotic Chi	VariancHAC
asymptotic Chi-square	-square distribution. All	Cross 2nd Stagee of Max Band-
distribution. All other tests	other tests assume asymptotic	sectio Coefficie Ob
assume asymptotic	normality.	n nt of Reg Dep. Lag Lag width s
normality.	normanty.	0.000
normanty.	Intermediate ADF test	USA -5.92920 0.0007 3 1 1 8.0 8
Intermediate Phillips-Perron	results LOGKOIL	0.000 0.0000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00
test results LOGKOIL		
	Cross	
Cross		0.001
Cross contine Bondwidt	sectio Lag Max	BRA -2.10749 0.0005 0 1 1 5.0 8
sectio Bandwidt	n Prob. Lag Obs	0.001
n Prob. h Obs	0.323	IND -1.05748 0.00154 1 1 3.0 8
USA 0.326 4.0 9	USA 6 1 1 8	IDN -1.74233 0.0009 0.000 1 1 8.0 8

2			0).491			4	
0.73	35		AUS 1	1	1	8	0.000	
AUS 6	2.0	9	C	0.102			GBR 0.05919 0.0052 9 1 1 7.0	8
0.00)2		BRA 9	1	1	8	0.000	
BRA 2	8.0	9	C).848			CAN -4.98940 0.0004 2 1 1 8.0	8
0.89	92		IND 2	1	1	8	0.000	
IND 7	1.0	9	C).158			MEX -2.07322 0.0040 6 1 1 8.0	8
0.40)2		IDN 1	1	1	8		
IDN 4	8.0	9	C).981			Coefficie SE	Ob
0.82	20		GBR 9	1	1	8	nt t-Stat Reg mu* sig*	s
GBR 1	1.0	9	C).145			Poole 1.00	
0.83	38		CAN 2	1	1	8	d -2.04181 -7.641 1.129 -0.703 3	64
CAN 9	4.0	9	C).912				
0.81	1		MEX 4	1	1	8		
MEX 6	2.0	9						

1st Different			
РР	ADF	LL	
GDP Riil	GDP Riil	GDP Riil	
Null Hypothesis: Unit root	Null Hypothesis: Unit root	Null Hypothesis: Unit root (common unit root	
(individual unit root process)	(individual unit root process)	process)	
Series: D(LOG_RIIL)	Series:	Series: D(LOG_RIIL)	
Date: 06/20/23 Time:	D(LOG_RIIL)	Date: 06/20/23 Time: 12:05	
12:15	Date: 06/20/23	Sample: 2012 2021	
Sample: 2012 2021	Time: 12:22	Exogenous variables: Individual effects, individual	
Exogenous variables:	Sample: 2012	linear trends	
Individual effects, individual	2021	User-specified lags: 1	
linear	Exogenous variables: Individu	al Newey-West automatic bandwidth selection and	
trends	effects, individual linear trend	s Bartlett kernel	
Newey-West automatic	User-specified	Total (balanced) observations:	
bandwidth selection and	lags: 1	56	
Bartlett kernel	Total (balanced)	Cross-sections included: 8	
Total (balanced)	observations: 56		
observations: 64	Cross-sections	Statisti Prob.*	
Cross-sections	included: 8	Method c *	
included: 8		-	
<u> </u>	Statisti Prob	.* 8.4974 0.000	
Prob.*	Method c *	Levin, Lin & Chu t* 3 0	
Method Statistic *	ADF - Fisher 39.525 0.00	-	
PP - Fisher 0.000	Chi-square 9 9	** Probabilities are computed assuming asympotic	
Chi-square 40.0398 8	-	normality	
PP - Choi Z- 0.000	ADF - Choi Z- 3.5185 0.00	-	
stat -3.56845 2	stat 0 2	Intermediate results on	
		$=$ D(LOG_RIIL)	
** Probabilities for Fisher	** Probabilities for Fisher test	~	
tests are computed using an	are computed using an	VariancHAC	
asymptotic Chi-square	asymptotic Chi	Cross 2nd Stagee of Max Band-	
distribution. All other tests	-square distribution. All	sectio Coefficie Ob	
assume asymptotic	other tests assume asymptotic		
normality.	normality.	0.000	
		USA -3.24226 8.E-05 1 1 1 7.0 7	
Intermediate Phillips-Perron	Intermediate ADF test	AUS -1.69205 0.0003 0.000 1 1 7.0 7	

test results D(LOG_RIIL)	results D(LOG_RIIL)	3
		0.001
Cross sectio Bandwidt	Cross sectio Lag Max	BRA -1.28298 0.0013 0 1 1 7.0 7 0.002
D 1 1 01		
-		IND -2.97547 0.0026 0 1 1 7.0 7 0.000
0.015 USA 2 6.0 8	0.026 USA 3 1 1 7	IDN -4.67680 0.0005 3 1 1 7.0 7
0.124 0.0 8	0.125	0.002
AUS 0 6.0 8	AUS 0 1 1 7	GBR -1.82895 3.E-05 5 1 1 2.0 7
0.134	0.168	0.000
BRA 0 6.0 8	BRA 8 1 1 7	CAN -1.91585 0.0004 3 1 1 7.0 7
0.228	0.241	0.002
IND 3 7.0 8	IND 7 1 1 7	MEX -2.65601 0.0026 6 1 1 7.0 7
0.172	0.338	
IDN 0 5.0 8	IDN 4 1 1 7	Coefficie SE Ob
0.028	0.002	nt t-Stat Reg mu* sig* s
GBR 9 2.0 8	GBR 7 1 1 7	Poole 1.00
0.565	0.071	d -1.89490 -15.193 1.208 -0.703 3 56
CAN 5 6.0 8	CAN 5 1 1 7	
0.012	0.292	
MEX 5 7.0 8	MEX 4 1 1 7	
Ekspor Bahan Bakar	Ekspor Bahan Bakar	Ekspor Bahan Bakar
Null Hypothesis: Unit root	Null Hypothesis: Unit root	
(individual unit root process		Null Hypothesis: Unit root (common unit root
Series:	Series:	process)
D(EXPOR_FUEL)	D(EXPOR_FUE	Series:
Date: 06/20/23 Time:	L)	D(EXPOR_FUEL)
12:15	Date: 06/20/23	Date: 06/20/23 Time: 12:06
Sample: 2012 2021	Time: 12:22	Sample: 2012 2021 Exogenous variables: Individual effects, individual
Exogenous variables: Individual effects, individua	Sample: 2012 1 2021	linear trends
linear	Exogenous variables: Individual	User-specified lags: 1
trends	effects, individual linear trends	Newey-West automatic bandwidth selection and
Newey-West automatic	User-specified	Bartlett kernel
bandwidth selection and	lags: 1	Total (balanced) observations:
Bartlett kernel	Total (balanced)	56
Total (balanced)	observations: 56	Cross-sections included: 8
observations: 64	Cross-sections	
Cross-sections	included: 8	Statisti Prob.*
included: 8		Method c *
	= Statisti Prob.*	-
Prob	* Method c *	13.419 0.000
Method Statistic *	ADF - Fisher 36.670 0.002	Levin, Lin & Chu t* 0 0
PP - Fisher 0.29	5 Chi-square 5 3	
Chi-square 18.4772 7	-	** Probabilities are computed assuming asympotic
PP - Choi Z- 0.37	2 ADF - Choi Z- 2.8499 0.002	normality
stat -0.32515 5	stat 6 2	
	=	Intermediate results on
** Probabilities for Fisher	** Probabilities for Fisher tests	D(EXPOR_FUEL)
tests are computed using an	are computed using an	
asymptotic Chi-square	asymptotic Chi	VariancHAC
distribution. All other tests	-square distribution. All	Cross 2nd Stagee of Max Band-
assume asymptotic	other tests assume asymptotic	sectio Coefficie of Reg Dep. Lag Lag width Ob

normality.	normality.	n nt s
		1.156
Intermediate Phillips-Perron	Intermediate ADF test	USA -1.85515 0.7984 3 1 1 7.0 7
test results	results	56.06
D(EXPOR_FUEL)	D(EXPOR_FUEL)	AUS -1.94378 37.1761 1 1 0.0 7
Cross	Cross	1.206 BRA -1.57052 2.7577 1 1 1 7.0 7
sectio Bandwidt	sectio Lag Max	3.416
n Prob. h Obs	n Prob. Lag Obs	IND -1.85772 3.7784 1 1 1 7.0 7
0.464	0.025	2.974
USA 6 7.0 8	USA 6 1 1 7	IDN -1.99151 1.0302 6 1 1 7.0 7
0.996	0.845	0.651
AUS 3 6.0 8	AUS 9 1 1 7	GBR -1.47754 1.9675 5 1 1 7.0 7
0.064	0.404	5.316
BRA 7 7.0 8	BRA 5 1 1 7	CAN -2.03459 6.88907 1 1 7.0 7
0.213	0.078	0.732
IND 7 7.0 8	IND 9 1 1 7	MEX -1.67250 0.7220 4 1 1 7.0 7
0.661	0.005	
IDN 9 7.0 8	IDN 0 1 1 7	Coefficie SE Ob
0.332	0.439	nt t-Stat Reg mu* sig* s
GBR 8 7.0 8 0.167	GBR 0 1 1 7 0.092	Poole 1.00
CAN 8 7.0 8	CAN 4 1 1 7	d -1.85739 -17.554 1.021 -0.703 3 56
0.410 8	0.077	
MEX 9 7.0 8	MEX 7 1 1 7	
Impor Bahan Bakar	Impor Bahan Bakar	Impor Bahan Bakar
Null Hypothesis: Unit root	Null Hypothesis: Unit root	Null Hypothesis: Unit root (common unit root
(individual unit root process)	(individual unit root process)	process)
Series:	Series:	Series:
D(IMPOR_FUEL)	D(IMPOR_FUE	D(IMPOR_FUEL)
Date: 06/20/23 Time:	L)	Date: 06/20/23 Time: 12:06
12:16	Date: 06/20/23	Sample: 2012 2021
Sample: 2012 2021	Time: 12:23	Exogenous variables: Individual effects, individual
Exogenous variables:	Sample: 2012	linear trends
Individual effects, individual linear	2021	User-specified lags: 1
trends	Exogenous variables: Individual effects, individual linear trends	Newey-West automatic bandwidth selection and Bartlett kernel
Newey-West automatic	User-specified	Total (balanced) observations:
bandwidth selection and	lags: 1	56
Bartlett kernel	Total (balanced)	Cross-sections included: 8
Total (balanced)	observations: 56	
observations: 64	Cross-sections	Statisti Prob.*
Cross-sections	included: 8	Method c *
included: 8		-
	~	25.015 0.000
	Statisti Prob.*	
Prob.*	Method c *	Levin, Lin & Chu t* 0 0
Prob.* Method Statistic *	Method c * ADF - Fisher 65.179 0.000	Levin, Lin & Chu t* 0 0
Prob.*MethodStatisticPP - Fisher0.630	Method c *	Levin, Lin & Chu t* 0 0 *** Probabilities are computed assuming asympotic
Prob.*MethodStatisticPP - Fisher0.630Chi-square13.5684	Methodc*ADF - Fisher65.1790.000Chi-square70-	Levin, Lin & Chu t* 0 0
MethodStatistic*PP - Fisher0.630Chi-square13.56848PP - Choi Z-0.432	Method c * ADF - Fisher 65.179 0.000 Chi-square 7 0 - - - ADF - Choi Z- 5.4920 0.000	Levin, Lin & Chu t* 0 0 ** Probabilities are computed assuming asympotic normality
Prob.*MethodStatisticPP - Fisher0.630Chi-square13.5684	Methodc*ADF - Fisher65.1790.000Chi-square70-	Levin, Lin & Chu t* 0 0 *** Probabilities are computed assuming asympotic

	r	r
tests are computed using an	are computed using an	VariancHAC
asymptotic Chi-square	asymptotic Chi	Cross 2nd Stagee of Max Band-
distribution. All other tests	-square distribution. All	sectio Coefficie Ob
assume asymptotic	other tests assume asymptotic	n nt of Reg Dep. Lag Lag width s
normality.	normality.	1.359
		USA -1.83159 2.3062 1 1 1 7.0 7
Intermediate Phillips-Perron	Intermediate ADF test	2.140
test results	results	AUS -1.88887 1.8126 2 1 1 7.0 7
D(IMPOR_FUEL)	D(IMPOR_FUEL)	1.952
		BRA -2.02720 2.4009 2 1 1 7.0 7
Cross	Cross	6.384
sectio Bandwidt	sectio Lag Max	IND -1.63503 10.177 7 1 1 7.0 7
n Prob. h Obs	n Prob. Lag Obs	2.452
0.290	0.170	IDN -1.87858 0.6145 5 1 1 7.0 7
USA 2 7.0 8	USA 6 1 1 7	1.924
0.353	0.047	GBR -2.16067 0.29703 1 1 7.0 7
AUS 1 7.0 8	AUS 8 1 1 7	0.616
0.436	0.082	CAN -1.90389 0.9369 2 1 1 7.0 7
BRA 0 6.0 8 0.280	BRA 9 1 1 7	0.755
IND 8 7.0 8	0.176 IND 1 1 1 7	MEX -1.90602 0.1123 7 1 1 7.0 7
0.475	0.001	Coefficie SE Ob
IDN 4 6.0 8	IDN 4 1 1 7	nt t-Stat Reg mu* sig* s
0.844	0.000	Poole 1.00
GBR 2 7.0 8	GBR 5 1 1 7	d -1.95334 -28.683 1.035 -0.703 3 56
0.284	0.139	u -1.75554 -28.085 1.055 -0.705 5 50
CAN 4 7.0 8	CAN 3 1 1 7	
0.790	0.000	
MEX 0 7.0 8	MEX 6 1 1 7	
Produksi Minyak Mentah	Produksi Minyak Mentah	Produksi Minyak Mentah
Null Hypothesis: Unit root	Null Hypothesis: Unit root	Null Hypothesis: Unit root (common unit root
(individual unit root process)	(individual unit root process)	process)
Series:	Series:	Series: D(LOGPROIL)
D(LOGPROIL)	D(LOGPROIL)	Date: 06/20/23 Time: 12:06
Date: 06/20/23 Time: 12:16	Date: 06/20/23 Time: 12:23	Sample: 2012 2021
Sample: 2012 2021	Sample: 2012	Exogenous variables: Individual effects, individual linear trends
Exogenous variables:	2021	User-specified lags: 1
Individual effects, individual	Exogenous variables: Individual	Newey-West automatic bandwidth selection and
linear	effects, individual linear trends	Bartlett kernel
trends	User-specified	Total (balanced) observations:
Newey-West automatic	lags: 1	56
bandwidth selection and	Total (balanced)	Cross-sections included: 8
Bartlett kernel	observations: 56	
Total (balanced)	Cross-sections	Statisti Prob.*
observations: 64	included: 8	Method c *
Cross-sections		
included: 8	Statisti Prob.*	8.5015 0.000
	Method c *	Levin, Lin & Chu t* 0 0
Prob.*	ADF - Fisher 30.907 0.013	
Method Statistic *	Chi-square 0 8	** Probabilities are computed assuming asympotic
PP - Fisher 0.081	ADF - Choi Z 0.112	normality
Chi-square 24.3776 6	stat 1.2150 2	

PP - Choi Z- 0.262	8	Intermediate results on
stat -0.63445 9 ** Probabilities for Fisher tests are computed using an asymptotic Chi-square	** Probabilities for Fisher tests are computed using an asymptotic Chi -square distribution. All	D(LOGPROIL) VariancHAC Cross 2nd Stagee of Max Band- sectio Coefficie
distribution. All other tests assume asymptotic	other tests assume asymptotic normality.	n nt of Reg Dep. Lag Lag width s 0.001
normality. Intermediate Phillips-Perron	Intermediate ADF test results D(LOGPROIL)	USA -1.83635 0.0005 1 1 1 7.0 0.003 AUS -2.07576 0.0066 5 1 1 7.0
test results D(LOGPROIL)	Cross	0.000 BRA -1.91285 0.0006 5 1 1 7.0
Cross sectio Bandwidt	sectio Lag Max n Prob. Lag Obs	0.000 IND -1.45726 0.0003 2 1 1 4.0
n Prob. h Obs 0.508	0.007 USA 9 1 1 7	0.000 IDN -1.29067 0.0004 1 1 1 7.0
USA 9 7.0 8 0.373	0.272 AUS 9 1 1 7	0.000 GBR -1.00306 0.0025 5 1 1 6.0
AUS 4 7.0 8 0.001	0.289 BRA 5 1 1 7	0.000 CAN -2.34601 0.0001 4 1 1 7.0
BRA 3 7.0 8 0.640	0.432 IND 4 1 1 7	0.000 MEX 0.32460 0.0002 3 1 1 2.0
IND 0 5.0 8 0.115 IDN 1 7.0 8	0.458 IDN 5 1 1 7 0.722	Coefficie SE C nt t-Stat Reg mu* sig* s
0.944 GBR 2 7.0 8 0.322	GBR 1 1 1 7 0.002 CAN 2 1 1 7	Poole 1.00 d -1.66648 -11.273 1.463 -0.703 3
CAN 4 7.0 8 0.888 MEX 5 2.0 8	0.996 MEX 2 1 1 7	
Konsumsi Minyak Mentah	Konsumsi Minyak Mentah	Konsumsi Minyak Mentah
Null Hypothesis: Unit root	Null Hypothesis: Unit root	Null Hypothesis: Unit root (common unit root
(individual unit root process) Series: D(LOGKOIL)	(individual unit root process) Series:	process) Series: D(LOGKOIL)
Date: 06/20/23 Time:	D(LOGKOIL)	Date: 06/20/23 Time: 12:07
12:16	Date: 06/20/23	Sample: 2012 2021
Sample: 2012 2021	Time: 12:23	Exogenous variables: Individual effects, individual
Exogenous variables:	Sample: 2012	linear trends
Individual effects, individual	2021	User-specified lags: 1
linear trondo	Exogenous variables: Individual	Newey-West automatic bandwidth selection and
trends Newey-West automatic	effects, individual linear trends User-specified	Bartlett kernel Total (balanced) observations:
bandwidth selection and	lags: 1	56
Bartlett kernel	Total (balanced)	Cross-sections included: 8
Total (balanced)	observations: 56	
observations: 64	Cross-sections	Statisti Prob.*
Cross-sections	included: 8	Method c *
included: 8	Statisti Prob.*	- 0.9191 0.179
Prob.*	Method c *	Levin, Lin & Chu t* 4 0

PP - Fisher 0.000	Chi-square 5 9	** Dechabilities are computed ecouping comparies		
	Chi-square 5 9 ADF - Choi Z- 0.1857 0.573	** Probabilities are computed assuming asympotic		
Chi-square 43.5312 2	_	normality		
PP - Choi Z- 0.000	stat 6 7			
stat -4.08618 0		Intermediate results on		
	** Probabilities for Fisher tests	D(LOGKOIL)		
** Probabilities for Fisher	are computed using an			
tests are computed using an	asymptotic Chi	VariancHAC		
asymptotic Chi-square	-square distribution. All	Cross 2nd Stagee of Max Band-		
distribution. All other tests	other tests assume asymptotic	sectio Coefficie Ob		
assume asymptotic	normality.	n nt of Reg Dep. Lag Lag width s		
normality.		0.001		
	Intermediate ADF test	USA -5.35901 0.0007 0 1 1 7.0 7		
Intermediate Phillips-Perron	results D(LOGKOIL)	0.001		
test results D(LOGKOIL)		AUS -2.08375 0.00267 1 1 4.0 7		
	Cross	0.000		
Cross	sectio Lag Max	BRA -1.90222 0.0008 6 1 1 7.0 7		
sectio Bandwidt	n Prob. Lag Obs	0.000		
n Prob. h Obs	0.127	IND -1.27302 0.00137 1 1 7.0 7		
0.006	USA 9 1 1 7	0.001		
USA 7 7.0 8	0.770	IDN -2.05588 0.0022 1 1 1 7.0 7		
0.148	AUS 0 1 1 7	0.004		
AUS 3 4.0 8	0.151	GBR 0.61294 0.0018 4 1 1 5.0 7		
0.085	BRA 7 1 1 7	0.000		
BRA 3 7.0 8	0.703	CAN -4.21435 0.0004 7 1 1 7.0 7		
0.073	IND 9 1 1 7	0.002		
IND 3 7.0 8	0.289			
	0.207	MEX -2.19777 0.0042 4 1 1 7.0 7		
0.247	IDN 4 1 1 7			
IDN 7 7.0 8	0.994	Coefficie SE Ob		
0.085	GBR 5 1 1 7	nt t-Stat Reg mu* sig* s		
GBR 6 2.0 8	0.055	Poole 1.00		
0.020	CAN 0 1 1 7	d -2.11982 -7.634 1.270-0.703 3 56		
CAN 8 7.0 8	0.848			
0.129	MEX 3 1 1 7			
MEX 3 3.0 8				

2nd Different					
PP	ADF	LL			
GDP Riil	GDP Riil	GDP Riil			
Null Hypothesis: Unit root (individual unit root process) Series: D(LOG_RIIL,2) Date: 06/20/23 Time: 12:17 Sample: 2012 2021 Exogenous variables: Individual effects, individual linear	Null Hypothesis: Unit root (individual unit root process) Series: D(LOG_RIIL,2) Date: 06/20/23 Time: 12:24 Sample: 2012 2021 Exogenous variables: Individual effects, individual linear trends User-specified lags: 1	Null Hypothesis: Unit root (common unit root process) Series: D(LOG_RIIL,2) Date: 06/20/23 Time: 12:08 Sample: 2012 2021 Exogenous variables: Individual effects, individual linear trends User-specified lags: 1 Newey-West automatic bandwidth selection and Bartlett kernel Total (balanced) observations:			
trends	Total (balanced)	48			
Newey-West automatic	observations: 48	Cross-sections included: 8			
bandwidth selection and		L <u></u>			

Bartlett kernel	Cross-sections		St-4:-4:	Durt *
Total (balanced)	included: 8	Method	Statisti	Prob.* *
observations: 56		Method	с	*
Cross-sections	Statisti Prob.*		- 19.053	0.000
included: 8	Method c *	Levin, Lin & Chu t*	3	0.000
	ADF - Fisher 40.917 0.000		5	0
Prob.*	Chi-square 4 6	** Probabilities are computed	1 assuming	
Method Statistic *	-	asympotic normality	0	
PP - Fisher 0.269	ADF - Choi Z- 3.0159 0.001			
Chi-square 18.9913 1	stat 3 3	Intermediate results on		
PP - Choi Z- 0.985		D(LOG_RIIL,2)		
stat 2.18900 7	** Probabilities for Fisher tests			
	are computed using an	VariancHAC		
** Probabilities for Fisher	asymptotic Chi	Cross 2nd Stagee of	Max	k Band-
tests are computed using an	-square distribution. All	sectio Coefficie		Ob
asymptotic Chi-square	other tests assume asymptotic	n nt of Reg Dep.	Lag Lag	width s
distribution. All other tests	normality.	0.00	0	
assume asymptotic normality.	Intermediate ADF test	USA -3.20845 0.00033	1 1	6.0 6
normanty.	results D(LOG_RIIL,2)	0.00		
Intermediate Phillips-Perron		AUS -1.79489 0.00096	1 1	6.0 6
test results D(LOG_RIIL,2)	Cross	0.00		
	sectio Lag Max	BRA -1.72462 0.0007 2	1 1	6.0 6
Cross	n Prob. Lag Obs	0.00	4 1 1	6.0 6
sectio Bandwid	0.220	IND -5.20733 0.00173 0.00		6.0 6
n Prob. th Obs	USA 1 1 1 6	IDN -3.63029 0.00122	1 1	5.0 6
0.985	0.355	1DIN -3.03029 0.00122 0.00		5.0 0
USA 8 6.0 7	AUS 6 1 1 6	GBR -3.00197 2.E-060	1 1	3.0 6
0.646	0.036	0.00		5.0 0
AUS 8 6.0 7	BRA 2 1 1 6	CAN -1.94933 0.0012.9	1 1	6.0 6
0.856	0.067	0.00	4	
BRA 7 6.0 7	IND 1 1 1 6	MEX -5.16049 0.00400	1 1	6.0 6
0.999	0.738			
IND 9 6.0 7	IDN 7 1 1 6	Coefficie SE		Ob
0.063	0.000	nt t-Stat Reg	mu* sig*	s
IDN 3 6.0 7	GBR 1 1 1 6	Poole	1.0	0
0.005 GBR 9 2.0 7	0.348	d -2.83814 -28.393 1.54	3-0.703 3	48
GBR 9 2.0 7 0.368	CAN 1 1 1 6 0.266			
CAN 0 6.0 7	MEX 3 1 1 6			
0.999				
MEX 4 6.0 7				
Ekspor Bahan Bakar	Ekspor Bahan Bakar	Ekspor Bahan Bakar		
Null Hypothesis: Unit root	Null Hypothesis: Unit root	Null Hypothesis: Unit root (c	ommon unit	root
(individual unit root	(individual unit root process)	process)		
process)	Series:	Series:		
Series:	D(EXPOR_FUEL	D(EXPOR_FUEL,2)		
D(EXPOR_FUEL,2)	,2)	Date: 06/20/23 Time: 12:09		
Date: 06/20/23	Date: 06/20/23	Sample: 2012 2021		
Time: 12:17	Time: 12:25	Exogenous variables: Individual effects, individual		
Sample: 2012 2021	Sample: 2012	linear trends		
Exogenous variables:	2021	User-specified lags: 1		
Individual effects, individual	Exogenous variables: Individual	Newey-West automatic band	width selecti	on and

	1			
linear	effects, individual linear trends	Bartlett kernel		
Trends	User-specified	Total (balanced) observations:		
Newey-West automatic	lags: 1	48		
bandwidth selection and	Total (balanced)	Cross-sections included: 8		
Bartlett kernel	observations: 48			
Total (balanced)	Cross-sections	Statisti Prob.*		
observations: 56	included: 8	Method c *		
Cross-sections		-		
included: 8	Statisti Prob.*	8.5344 0.000		
	Method c *	Levin, Lin & Chu t* 9 0		
Prob.*	ADF - Fisher Chi- 21.105 0.174			
Method Statistic *	square 7 5	** Probabilities are computed assuming		
PP - Fisher 0.702	-	asympotic normality		
Chi-square 12.5924 3	1.2854 0.099			
PP - Choi Z- 0.784	ADF - Choi Z-stat 3 3	Intermediate results on		
stat 0.78674 3		D(EXPOR_FUEL,2)		
	** Probabilities for Fisher tests			
** Probabilities for Fisher	are computed using an	VariancHAC		
tests are computed using an	asymptotic Chi	Cross 2nd Stagee of Max Band-		
asymptotic Chi-square	-square distribution. All	sectio Coefficie Ob		
distribution. All other tests	other tests assume asymptotic	n nt of Reg Dep. Lag Lag width s		
assume asymptotic	normality.	2.982		
normality.		USA -1.85345 2.43740 1 1 6.0 6		
	Intermediate ADF test	104.0		
Intermediate Phillips-Perron	results	AUS -0.83485 54.5342 1 1 0.0 6		
test results	D(EXPOR_FUEL,2)	3.561		
D(EXPOR_FUEL,2)		BRA -1.93782 2.3768 8 1 1 6.0 6		
	Cross	10.78		
Cross	sectio Lag Max	IND -1.83996 10.8224 1 1 4.0 6		
sectio Bandwid	n Prob. Lag Obs	6.967		
n Prob. th Obs	0.207	IDN -1.96967 3.85786 1 1 6.0 6		
0.919	USA 7 1 1 6	1.833		
USA 8 6.0 7	0.937	GBR -1.85278 1.35147 1 1 6.0 6		
0.514	AUS 3 1 1 6	16.13		
AUS 3 1.0 7	0.218	CAN -1.93999 20.5087 1 1 6.0 6		
0.131	BRA 8 1 1 6	2.165		
BRA 0 6.0 7	0.324	MEX -1.79636 1.7033 2 1 1 4.0 6		
0.691	IND 4 1 1 6			
IND 4 6.0 7	0.109	Coefficie SE Ob		
0.978	IDN 4 1 1 6	nt t-Stat Reg mu* sig* s		
IDN 2 6.0 7	0.185	Poole 1.00		
0.220	GBR 6 1 1 6	d -1.87334 -13.758 1.010 -0.703 3 48		
GBR 6 6.0 7	0.375			
0.249	CAN 6 1 1 6			
CAN 9 6.0 7	0.247			
0.797	MEX 8 1 1 6			
MEX 8 6.0 7				
Impor Bahan Bakar	Impor Bahan Bakar	Impor Bahan Bakar		
Null Hypothesis: Unit root	Null Hypothesis: Unit root	Null Hypothesis: Unit root (common unit root)		
(individual unit root	(individual unit root process)	process)		
process)	Series:	Series:		
Series:	D(IMPOR_FUEL	D(IMPOR_FUEL,2)		
D(IMPOR_FUEL,2)	,2)	D(httl OK_1 OLL,2) Date: 06/20/23 Time: 12:09		
Dam OK_1 OLL,2)	,~/	Duce. 00/20/25 Time. 12.07		

	1	<u></u>		
Date: 06/20/23	Date: 06/20/23	Sample: 2012 2021		
Time: 12:18	Time: 12:26	Exogenous variables: Individual effects, individual linear trends		
Sample: 2012 2021	Sample: 2012			
Exogenous variables:	2021	User-specified lags: 1		
Individual effects, individual	Exogenous variables: Individual	Newey-West automatic bandwidth selection and		
linear	effects, individual linear trends	Bartlett kernel		
Trends	User-specified	Total (balanced) observations:		
Newey-West automatic	lags: 1	48		
bandwidth selection and	Total (balanced)	Cross-sections included: 8		
Bartlett kernel	observations: 48		_	
	Cross-sections	Statisti Prob.*		
Total (balanced)				
observations: 56	included: 8	Method c *		
Cross-sections		-		
included: 8	Statisti Prob.*	16.855 0.000		
	Method c *	Levin, Lin & Chu t* 9 0		
Prob.*	ADF - Fisher Chi- 34.211 0.005		_	
Method Statistic *	square 2 1	** Probabilities are computed assuming		
PP - Fisher 0.988	-	asympotic normality		
Chi-square 5.99788 1	2.8600 0.002			
PP - Choi Z- 0.998	ADF - Choi Z-stat6 1	Intermediate results on		
stat 2.96301 5		D(IMPOR_FUEL,2)		
	** Probabilities for Fisher tests		_	
** Probabilities for Fisher	are computed using an	VariancHAC		
tests are computed using an	asymptotic Chi	Cross 2nd Stagee of Max Band-		
asymptotic Chi-square	-square distribution. All	e)b	
distribution. All other tests	other tests assume asymptotic	n nt of Reg Dep. Lag Lag width s		
		<u>3.643</u>		
assume asymptotic	normality.		_	
normality.		USA -1.89370 4.39663 1 1 6.0 6	5	
	Intermediate ADF test	7.705		
Intermediate Phillips-Perron	results	AUS -1.91707 6.2084 6 1 1 4.0 6	6	
test results	D(IMPOR_FUEL,2)	5.406		
D(IMPOR_FUEL,2)		BRA -1.96182 8.49708 1 1 6.0 6	5	
	Cross	17.44		
Cross	sectio Lag Max	IND -1.62752 13.0869 1 1 4.0 6	6	
sectio Bandwid	n Prob. Lag Obs	5.884		
n Prob. th Obs	0.319	IDN -1.81261 2.01608 1 1 6.0 6	6	
0.521	USA 7 1 1 6	5.056		
USA 1 6.0 7	0.302	GBR -2.01466 0.33559 1 1 5.0 6	6	
0.931	AUS 8 1 1 6	1.991		
AUS 3 6.0 7	0.417	CAN -1.93857 2.29234 1 1 5.0 6	6	
0.711	BRA 1 1 1 6	3.964	5	
	0.231		c	
BRA 5 6.0 7		<u>MEX -1.79840 0.4523 2 1 1 3.0 6</u>	5	
0.310	IND 2 1 1 6			
IND 1 6.0 7	0.032	Coefficie SE C)b	
0.647	IDN 1 1 1 6	nt t-Stat Reg mu* sig* s		
IDN 1 6.0 7	0.003	Poole 1.00		
0.998	GBR 2 1 1 6	d -1.90963 -21.706 1.020 -0.703 3 4	48	
GBR 8 6.0 7	0.372		_	
0.722	CAN 7 1 1 6			
CAN 1 6.0 7	0.104			
0.997	MEX 1 1 1 6			
MEX 2 6.0 7				
,				
Produksi Minyak Mentah	Produksi Minyak Mentah	Produksi Minyak Mentah		
i iouuksi minyak Melitan	i ioduksi winiyak wientan	i iouuksi wiiiiyak wicinail		

Null Hypothesis: Unit root	Null Hypothesis: Unit root	Null Hypothesis: Unit root (common unit root			
(individual unit root	(individual unit root process)	process)			
process)	Series:	Series:			
Series:	D(LOGPROIL,2)	D(LOGPROIL,2)			
D(LOGPROIL,2)	Date: 06/20/23	Date: 06/20/23 Time: 12:10			
Date: 06/20/23	Time: 12:26	Sample: 2012 2021			
Time: 12:18	Sample: 2012	Exogenous variables: Individual effects, individual			
Sample: 2012 2021	2021	linear trends			
Exogenous variables:	Exogenous variables: Individual	User-specified lags: 1			
Individual effects, individual	effects, individual linear trends	Newey-West automatic bandwidth selection and			
linear	User-specified	Bartlett kernel			
trends	lags: 1	Total (balanced) observations:			
Newey-West automatic	Total (balanced)	48			
bandwidth selection and	observations: 48	Cross-sections included: 8			
Bartlett kernel	Cross-sections				
Total (balanced)	included: 8	Statisti Prob.*			
observations: 56		Method c *			
Cross-sections	Statisti Prob.*	-			
included: 8	Method c *	7.3768 0.000			
	ADF - Fisher 19.615 0.238	Levin, Lin & Chu t* 6 0			
Prob.*	Chi-square 8 0				
Method Statistic *	-	** Probabilities are computed assuming			
PP - Fisher 0.000	ADF - Choi Z- 0.6399 0.261	asympotic normality			
Chi-square 50.1722 0	stat 0 1				
PP - Choi Z- 0.000		Intermediate results on			
stat -3.11281 9	** Probabilities for Fisher tests	D(LOGPROIL,2)			
	are computed using an	_ (
** Probabilities for Fisher	asymptotic Chi	VariancHAC			
tests are computed using an	-square distribution. All	Cross 2nd Stagee of Max Band-			
asymptotic Chi-square	other tests assume asymptotic	sectio Coefficie Ob			
distribution. All other tests	normality.	n nt of Reg Dep. Lag Lag width s			
assume asymptotic		0.003			
normality.	Intermediate ADF test	USA -1.98529 0.0018 0 1 1 6.0 6			
	results D(LOGPROIL,2)	0.010			
Intermediate Phillips-Perron		AUS -1.93797 0.0182 0 1 1 6.0 6			
test results D(LOGPROIL,2)	Cross	0.003			
;_/	sectio Lag Max	BRA -2.35145 0.0014 7 1 1 3.0 6			
Cross	n Prob. Lag Obs	0.001			
sectio Bandwid	0.070	IND -1.78834 0.0007 4 1 1 0.0 6			
n Prob. th Obs	USA 1 1 1 6	0.000			
0.464	0.744	IDN -2.02097 0.00114 1 1 6.0 6			
USA 7 6.0 7	AUS 4 1 1 6	0.001			
0.072	0.353	GBR -2.14654 0.0013 6 1 1 5.0 6			
AUS 0 6.0 7	BRA 6 1 1 6	0.001			
0.005	0.820	CAN -2.31989 0.0005 2 1 1 6.0 6			
BRA 2 6.0 7	IND 8 1 1 6	0.001			
0.687	0.603	MEX -1.66320 0.0002 1 1 1 2.0 6			
IND 7 6.0 7	IDN 2 1 1 6	MLX 1.00320 0.00021 1 1 2.0 0			
0.017	0.117	Coofficia SE Ob			
		Coefficie SE Ob			
IDN 3 6.0 7 0.062	GBR 5 1 1 6	nt t-Stat Reg mu* sig* s			
	0.062 CAN 2 1 1 6	Poole 1.00			
GBR 8 6.0 7 0.985	CAN 3 1 1 6	d -2.11408 -13.957 1.014 -0.703 3 48			
	0.823				
CAN 5 6.0 7	MEX 1 1 1 6				

0.000					
MEX 1 6.0 7					
Konsumsi Minyak Mentah	Konsumsi Minyak Mentah	Konsumsi Minyak Mentah			
Null Hypothesis: Unit root	Null Hypothesis: Unit root				
(individual unit root	(individual unit root process)	Null Hypothesis: Unit root (common unit root			
process)	Series:	process)			
Series:	D(LOGKOIL,2)	Series:			
D(LOGKOIL,2)	Date: 06/20/23	D(LOGKOIL,2)			
Date: 06/20/23	Time: 12:26	Date: 06/20/23 Time: 12:10			
Time: 12:18	Sample: 2012	Sample: 2012 2021			
Sample: 2012 2021	2021	Exogenous variables: Individual effects, individual			
Exogenous variables:	Exogenous variables: Individual	linear trends			
Individual effects, individual	effects, individual linear trends	User-specified lags: 1			
linear	User-specified	Newey-West automatic bandwidth selection and			
trends	lags: 1	Bartlett kernel			
Newey-West automatic	Total (balanced)	Total (balanced) observations:			
bandwidth selection and	observations: 48	48			
Bartlett kernel	Cross-sections	Cross-sections included: 8			
Total (balanced)	included: 8				
observations: 56		Statisti Prob.*			
Cross-sections	Statisti Prob.*	Method c *			
included: 8	Method c *				
	ADF - Fisher 33.565 0.006	8.5139 0.000			
Prob.*	Chi-square 7 2	Levin, Lin & Chu t* 2 0			
Method Statistic *	-				
PP - Fisher 0.000	ADF - Choi Z- 2.3865 0.008	** Probabilities are computed assuming			
Chi-square 61.3995 0	stat 6 5	asympotic normality			
PP - Choi Z- 0.000					
stat -4.69276 0	** Probabilities for Fisher tests	Intermediate results on			
	are computed using an	D(LOGKOIL,2)			
** Probabilities for Fisher	asymptotic Chi				
tests are computed using an	-square distribution. All	VariancHAC			
asymptotic Chi-square	other tests assume asymptotic	Cross 2nd Stagee of Max Band-			
distribution. All other tests	normality.	sectio Coefficie Ob			
assume asymptotic	normanty.	n nt of Reg Dep. Lag Lag width s			
normality.	Intermediate ADF test	0.002			
normanty.	results D(LOGKOIL,2)	USA -5.15390 0.0019 9 1 1 6.0 6			
Intermediate Phillips-Perron	lesuits D(LOOKOIL,2)	0.010			
test results D(LOGKOIL,2)	Cross	AUS -2.33359 0.00307 1 1 1.0 6			
test festilis D(LOOKOIL,2)	sectio Lag Max	0.002			
Cross		BRA -2.08474 0.00261 1 1 6.0 6			
		0.001			
	0.235				
n Prob. th Obs	USA 2 1 1 6	IND -4.54967 0.00118 1 1 6.0 6 0.005			
0.045	0.698				
USA 6 6.0 7	AUS 1 1 1 6	IDN -2.33047 0.00596 1 1 3.0 6			
0.095	0.508	0.007			
AUS 7 6.0 7	BRA 5 1 1 6	GBR -6.99595 0.00062 1 1 6.0 6			
0.010	0.150	0.002			
BRA 4 6.0 7	IND 2 1 1 6	CAN -4.56479 0.0002 1 1 1 6.0 6			
0.009	0.647	0.005			
IND 5 6.0 7	IDN 6 1 1 6	<u>MEX -6.07376 0.00157 1 1 6.0 6</u>			
0.958	0.126				
IDN 5 6.0 7	GBR 0 1 1 6	Coefficie t-Stat SE mu* sig* Ob			

0.00	00		0.00)1			nt Reg	7	s
GBR 1	6.0	7	CAN 2	1	1	6	Poole	1.00	
0.06	50		0.04	1			d -4.30767 -17.338 1.3	47 -0.703 3	48
CAN 0	6.0	7	MEX 6	1	1	6			
0.01	8								
MEX 8	6.0	7							