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1. INTRODUCTION  

Agriculture has always been essential for humanity and remains the foundation of both national and global 

economies [1], [2]. Food security is a major concern, with a potential crisis predicted in the next 50 years due 

to factors like climate change and soil nutrient depletion [3]. Recent reports highlight an alarming rise in food 

crises and malnutrition since 2024, emphasizing the urgent need for sustainable agricultural solutions[3]. 

Indonesia, as an agricultural country, plays a crucial role in global food security, particularly in soybean 

production. Despite its potential, soybean farming in Indonesia struggles to compete with major producers like 

Brazil and the U.S. due to lower yields and suboptimal farming techniques [4]. Then one of the important 

factors in agriculture is fertilization fertilization is crucial for soybean growth, but improper application can 
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 This study focuses on the optimization of reinforcement learning in the Deep 

Q Network algorithm. This is achieved using the prioritized experience replay 

algorithm and Noisy Network optimization. The main goal is to optimize 

fertilization so that it can adapt to its environment and avoid over-fertilization. 

This study uses the prioritized experience replay algorithm and Noisy 

Network optimization to create an agent in RL that is able to explore and 

exploit optimally so that it can improve the precision of fertilization in 

soybeans. This methodology includes several steps, including data 

preparation, creating an environment that matches real-world conditions, and 

validating changes in soil nutrient conditions.  The RL model was trained with 

PER and NN, with performance evaluated using cumulative reward, 

convergence speed, action distribution, and Mean Squared Error (MSE). The 

main results of the study show that DQN-PER NN achieves the highest 

cumulative reward, approaching 600,000 in 1000 episodes, outperforming 

standard DQN, A2C, and PPO. It also converges faster at episode 230, 

indicating superior adaptability. In addition, the results of this study indicate 

that the model that has been created is able to recommend a dose of SP36 

fertilizer of 150 kg/ha, urea fertilizer of 100 kg/ha, and KCL fertilizer of 125 

kg/ha. Compared with the A2C and PPO methods, the dose of urea fertilizer 

is reduced by 14%, KCL fertilizer is reduced by 33%, while for SP36 the 

difference is 23%. In Conclusion this model effectively distributes actions 

based on environmental conditions, which supports sustainable agriculture. 

In conclusion, the integration of PER and NN into DQN significantly 

improves exploration and decision making, and optimizes soybean 

fertilization. This model not only improves harvest efficiency but also 

encourages sustainable agricultural practices.  
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harm the environment and plants. Soybeans require essential nutrients like nitrogen, phosphorus, and 

potassium, which support chlorophyll synthesis, root growth, and nutrient uptake for higher yields and stress 

toleranc [5]-[8]. Proper fertilization improves bean size, quality, and resistance to pests while promoting 

sustainable agriculture and increasing farmers’ incomes [9], [10].  High temperatures during flowering and 

filling can reduce seed weight, alter chemical composition, and affect seedling emergence and vigor [11]. 

However, environmental factors such as temperature, rainfall, and solar radiation also influence soybean 

growth. High temperatures can reduce seed weight and affect seed quality, while rainfall and solar radiation 

impact productivity in various ways [10]-[12]. To enhance productivity, technological advancements such as 

artificial intelligence can be integrated into agricultural practices [13]-[15]. 

Given these complexities, advanced technologies such as artificial intelligence (AI) offer promising 

solutions to enhance precision in fertilization management. In [14] discusses reinforcement learning for 

irrigation management systems in rice and focuses on efficient water use through sensor nodes, but does not 

specifically discuss rice irrigation or weather forecasting. In addition, there is research related to fertilizer 

management by introducing the RL framework to optimize crop yields based on fertilizer management [15], 

[16], [17]. Several studies have used RL for fertilization, such as Dueling DDQN and PPO, which showed 

increased nitrogen efficiency. However, this method still has weaknesses in exploring actions and does not 

consider the needs of phosphorus and potassium in tropical agricultural systems such as in Indonesia [18]. 

Standard practice agents performed well but were less adaptive. Evaluations were conducted over several /years 

of trials, showing a strong correlation between fertilizer application and nitrogen uptake. Dueling DDQNs 

showed the best strategy in the long run, although results varied depending on the number of applications [19]. 

There are other studies related to fertilization using Gym-DSSAT [20], and CropGym [15] both studies 

discuss nitrogen fertilization management in corn and wheat crops in Europe [21]. 

Several previous studies have discussed Reinforcement Learning for agriculture that discusses 

fertilization and irrigation management using Proximal policy optimization (PPO) and Deep Q-Network 

(DQN) [14], [16] the results obtained outperform the policies recommended by experts, in addition, there is 

also nitrogen management in corn and wheat [20], but in soybean planting, farmers need three main fertilizers, 

namely Urea, KCL and Potassium for optimal growth. In addition, the study [22] uses Deep Q-Network as an 

algorithm for the system. The results obtained by the algorithm have shortcomings in terms of action 

distribution and optimal fertilizer amounts. In addition, these studies use subtropical environmental data such 

as Europe [16]. Although various studies have applied RL to fertilizer management, most of them still focus 

on nitrogen only and use subtropical plant-based environments. In addition, standard RL methods often face 

challenges in action exploration and learning stability, which can lead to suboptimal fertilizer 

recommendations. 

To overcome the limitations of exploration and learning stability, this study proposes the use of PER and 

NN in Deep Q-Network (DQN). PER allows the agent to focus more on experiences that are more influential 

on learning, while NN enhances action exploration by adapting to environmental changes. The PER 

optimization algorithm is a technique in RL to replay important experiences more often, This technique aims 

to improve learning efficiency by focusing RL on experiences that are most likely to improve decision making 

[23], [24]. PER uses mathematical reasoning to assign priority scores based on temporal difference errors (TD 

errors) which measure how surprising or unexpected a transition is [25], [26]. In Reinforcement Learning, 

especially Deep Q-Network, the ϵ − greedy policy is used, which often leads to inefficient exploration because 

it produces random behavior without considering the conditions and situations of the environment and agents 

and it is also often difficult to determine the right ϵ − greedy [27], [28]. In this case, Noisy Networks (NN) is 

a method of providing noise to the weights and biases of a neural network to train the neural network so that 

the agent can automatically adapt to environmental conditions over time, in short, NN reduces randomness and 

encourages choices during training [29]. 

The purpose of this study is to develop a DQN model using PER and NN methods for accurate and 

efficient soybean fertilization. By achieving this, we aim to improve the efficiency of soybean multifertilization 

based on Reinforcement Learning and to analyze the actions taken by the RL agent. It can be a recommendation 

for farmers to achieve better yields. this study is expected to improve the efficiency of soybean fertilization 

and provide more accurate data-based recommendations for farmers, thereby increasing crop yields and 

agricultural sustainability. 

 

2. MATERIAL AND METHODS  

2.1. Dataset 

This study uses data from two main sources: an NPK, pH, and moisture sensor providing time-series data 

from tests in Colomadu and Karang Anyar, and meteorological data from the Karang Anyar Meteorology and 
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Geophysics Agency, including rainfall and temperature [30], [31]. Additional information from journals helps 

define soil mass, fertilizer content, solar radiation, and planting time. After processing, this data is used to build 

the RL environment, including state, reward calculation, and actions. The steps taken in the preprocessing 

process are as follows: 

1. Data Collection: The data includes daily time series records from sensors with data collection on 1 ha of 

land. (N, P, K in ppm, pH, and Moisture) and meteorological data (rainfall, max/min/average 

temperature). Additional variables such as solar radiation, fertilizer content, soil mass, and planting period 

were gathered from literature. 

2. Data Cleaning: Missing values were handled using interpolation or imputation, outliers were identified 

using statistical methods (e.g., Z-score, IQR) and either removed or adjusted, and irrelevant data was 

eliminated to maintain dataset integrity. 

3. Normalization and Standardization: Features were normalized (0–1 range) to prevent magnitude 

dominance, standardized (mean = 0, std = 1) for models sensitive to normal distributions, and the 

appropriate technique was chosen based on variable characteristics. 

4. Data Merging: Sensor and meteorological data were aligned based on timestamps, granularity 

mismatches were resolved using resampling techniques, and inconsistencies in recording frequency 

were adjusted to maintain synchronization across variables. 

Merging sensor data with BMKG data based on the appropriate time series per day. Processed data would 

define the state in this RL environment, including variables like N, P, K, pH, humidity, temperature, and rainfall. 

It is combined with a reward function, probably aimed at improving crop yield or fertilizer efficiency. This will 

help in building the RL environment by defining state space, action space, and reward. The environment so 

defined will enable the agent to learn from its experiences and arrive at better decisions over some time. 

2.2. Method  

2.2.1. Deep Q-Network  

Q-learning is a popular reinforcement learning algorithm that operates independently of the 

environment and is classified as an off-policy method, as it updates values based on actions from a different 

policy [15], [16], [20]. In Deep Q-Networks (DQN), the action value depends on the maximum Q-value and 

its corresponding reward [18]. This approach can be combined with Q-learning to solve problems effectively, 

and since artificial neural networks (ANN) can directly process input values, state discretization is not required 

[32], [33].  Deep learning (DL) is commonly used in the agent block to enhance state stability and provide 

reliable transition functions [34], [35]. To address data correlation issues, experience replay captures and reuses 

past experiences from memory when training the neural network [36]. The optimal action value is determined 

by the target Q and the prediction Q, which are defined as the loss function in the relationship (1). 

 𝐿(θ) = 𝐸 [(𝑟 + γ.max𝑄 (𝑠𝑡+1, 𝑎𝑡+1|θ
′) − (𝑠𝑡 , 𝑎𝑡|θ))

2
] (1) 

After the sampling process to minimize the loss function, the next step is to update the state function 

and subsequent actions based on the previously defined function. The formulation of this next function is 

described by the Bellman equation in equation (2). 

 𝑄(𝑠𝑡 , 𝑎𝑡) = 𝑄(𝑠𝑡 , 𝑎𝑡) + [𝑟 + max𝑄 (𝑠𝑡+1, 𝑎𝑡+1) − 𝑄(𝑠𝑡 , 𝑎𝑡)]  (2) 

The parameter θ is used for weighting the target value and the predicted output value of the Q-network. 

Alpha (𝛼) is the learning rate that determines how much new information replaces old information. Reward (𝑟) 

is obtained after choosing an action, while the discount factor (𝛾) has a value between 0 and 1, which determines 

the current value of the future reward. The value 𝑚𝑎𝑥𝑄(𝑠𝑡+1, 𝑎𝑡+1) represents the Q value of the next state-

action pair chosen to obtain optimal future benefits [37], [38]. In the initialization of DQN parameters, some 

important settings include the maximum number of steps per episode (𝐶), the maximum number of episodes, 

the size of the replay experience memory, the learning rate (𝛼), the discount factor (𝛾), and a small value for 

random memory transitions (𝑃). 

 

2.2.2. Prioritized Experience Replay (PER) 

Prioritized Experience Replay (PER) enhances Reinforcement Learning by prioritizing experiences in 

the replay buffer based on Temporal Difference (TD) error, which measures the discrepancy between predicted 

and actual rewards. Experiences with larger TD errors are given higher priority, as they provide more 

informative learning signals.: TD error is usually denoted by δ and is calculated by the formula [39]-[42]: 

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
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 δ = 𝑟 + γ ⋅ max
𝑎′

𝑄 (𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)  (3) 

where 𝑟 is the reward, γ\gammaγ is the discount factor, (𝑄(𝑠, 𝑎)) represents the current Q-value, and 

(max
𝑎′
𝑄 (𝑠′, 𝑎′)) denotes the highest expected Q-value in the next state. PER assigns sampling priorities using 

[43]: 

 priority = (|δ| + ϵ)α   (4) 

𝛿 calculation based on (3) [37]. Once the priorities are calculated, the sampling probability P(i) for 

experience i in the buffer is determined by: 

 𝑃(𝑖) =
priority𝑖

∑ priority𝑗𝑗
   (5) 

This approach improves learning efficiency by focusing on high-value experiences, accelerating 

convergence, and enhancing decision-making in complex environments [44]. 

 

2.2.3. Noisy Network (NN) 

Noisy Networks is a technique in Reinforcement Learning (RL) that enhances an agent’s exploration 

by adding noise to the neural network [27]. This method replaces traditional approaches like epsilon-greedy, 

which require manual tuning of exploration parameters such as epsilon. With Noisy Networks, exploration 

happens automatically as noise is directly added to the weights and biases in specific layers of the neural 

network [45]. The main goal of Noisy Networks is to help agents explore more adaptively and efficiently. This 

technique allows agents to take different actions at each step without explicitly using a random exploration 

mechanism. The added noise influences the network’s output, enabling the agent to adjust its decisions based 

on the environment’s context [27]. In Noisy Networks, the added noise consists of learnable components. For 

example, the weights and biases in the network are expressed as a combination of the learned mean ϕ and 

standard deviation σ.The equations for weight (𝑤) and bias (𝑏) in Noisy Networks can be written as follows 

[27], [45]: 

 𝑤 = μ𝑤 + σ𝑤 ⋅ ϵ𝑤   (6) 

 𝑏 = μ𝑏 + σ𝑏 ⋅ ϵ𝑏 (7) 

𝜀 is random noise drawn from a standard distribution (usually a Gaussian distribution). The values of µ 

and 𝜎 are learned during training, allowing the agent to adjust the noise level accordingly for the environment. 

2.2.4. Reinforcement Learning 

This research applies Reinforcement Learning to optimize soybean fertilization by designing an 

environment that closely resembles real conditions. The agent selects fertilization actions for urea, SP36, and 

KCL based on a policy and target Q-network, aiming to maximize rewards. The state space represents 

environmental conditions, while rewards are determined by factors such as soil moisture, pH, nutrient 

deficiencies (N, P, K), and evapotranspiration influenced by temperature, soil moisture, and solar radiation. 

The overall framework is illustrated in Fig. 1 and will be explained in detail in Fig. 1. 

 

 
Fig. 1. Reinforcement Learning Framework 

 

Components in reinforcement learning are agents and environments; Environment is a system where 

agents interact to learn to make optimal decisions. In the environment consists of state space, then action space, 

termination condition, and rewards. all components are explained below:  

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
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1. State Space 
State is a description of the condition of the environment that helps the agent in understanding the current 

situation so that it can choose the right action. While the state space is in the form of variables related to the 

growth system of soybean plants. in general, the state space equation is:  

 𝑠 = {𝑠 ∈ 𝑅𝑛 ∣ 𝑠 = [𝑠1, 𝑠2, … , 𝑠𝑛]}   (8) 

In this Reinforcement Learning, the state space used consists of 10 variables that represent the 

environmental conditions of soybean growth. These variables shown in Table 1. 

 

Table. 1. State Space Variable 
State variable Description Unit 

N (Nitrogen) Nitrogen content in the soil Part per million 

P (Phosphorus) Phosphorus content in the soil Part per million 

K (Potassium) Potassium content of the soil Part per million 

pH The acidity of the soil - 

Moisture Soil moisture % 

temperature max Daily maximum temperature °C 

temperature min Daily minimum temperature °C 

temperature avg Daily average temperature °C 

rainfall Daily rainfall Mm 

phase plant Growth phases of soybean plants 0 to phase 5 

 

Based on the states above, the equation used for this state space is as follows: 

 𝑠 = {𝑁, 𝑃, 𝐾, 𝑝𝐻,𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒, 𝑆𝑢ℎ𝑢_𝑚𝑎𝑥, 𝑆𝑢ℎ𝑢_𝑚𝑖𝑛, 𝑆𝑢ℎ𝑢_𝑎𝑣𝑔, 𝑓𝑎𝑠𝑒} (9) 

2. Action Space 
Action space is the set of actions that can be taken by the agent at each step in the environment. There are 

3 action spaces in this research because it is in accordance with real conditions in the field, namely 0 for no 

fertilization, action 1 for urea or nitrogen fertilization, action 2 for fertilization for phosphorus or SP36, action 

3 for potassium or KCL fertilization, and action 4 for combination of urea Sp36 and KCL, the equation is as 

follows: 

 𝐴 =  {0, 1, 2, … , 4}   (10) 

Calculation of actions 1, 2, and 3 based on shortages [46] : 

 fn × pc = nud ×
sm

106
   (11) 

𝑓𝑛 is the fertilizer amount in kg per hectare, pc is the percentage of content this is the content used in the 

fertilizer, nud is the nutrient needed, sm is the soil mass and 106 is the multiplier vactor for m2 to hectare. 

3. Reward 
Rewards are given immediately after the agent takes an action, transitioning from state s to state s’. The 

total rewards received after each action are multiplied by a discount factor to prevent infinite reward 

accumulation. In a Reinforcement Learning (RL)-based fertilization system, the reward function plays a 

crucial role in guiding the agent toward optimal decisions. It provides feedback based on the actions taken 

and the environmental conditions observed. By designing an effective reward function, the agent can learn 

to maximize fertilization efficiency and improve crop yields. In this study, rewards are given not only for 

achieving the target levels of nitrogen (N), phosphorus (P), and potassium (K) but also for maintaining soil 

and plant health.. Rewards for soil nutrients are as follows: 

 𝑟𝑒𝑤𝑎𝑟𝑑. 𝑎𝑝𝑘 =

{
 
 
 
 
 

 
 
 
 
 
0, 𝑖𝑓𝑎𝑐𝑡𝑖𝑜𝑛 = 1 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑁 < 𝑡𝑎𝑟𝑔𝑒𝑡𝑁 ∧ 𝑃 < 𝑡𝑎𝑟𝑔𝑒𝑡𝑃 ∧ 𝐾 < 𝑡𝑎𝑟𝑔𝑒𝑡𝐾)

10, 𝑖𝑓𝑎𝑐𝑡𝑖𝑜𝑛 = 1 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑁 > 𝑡𝑎𝑟𝑔𝑒𝑡𝑁 ∧ 𝑃 > 𝑡𝑎𝑟𝑔𝑒𝑡𝑃 ∧ 𝐾 > 𝑡𝑎𝑟𝑔𝑒𝑡𝐾)

10,   𝑖𝑓 𝑎𝑐𝑡𝑖𝑜𝑛 = 1 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 (𝑁 < 𝑡𝑎𝑟𝑔𝑒𝑡𝑁
1,   𝑖𝑓 𝑎𝑐𝑡𝑖𝑜𝑛 = 1 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 (𝑁 > 𝑡𝑎𝑟𝑔𝑒𝑡𝑁
10,   𝑖𝑓 𝑎𝑐𝑡𝑖𝑜𝑛 = 2 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 (𝑁 < 𝑡𝑎𝑟𝑔𝑒𝑡𝑁
1, 𝑖𝑓 𝑎𝑐𝑡𝑖𝑜𝑛 = 2 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 (𝑁 > 𝑡𝑎𝑟𝑔𝑒𝑡𝑁
10,  𝑖𝑓 𝑎𝑐𝑡𝑖𝑜𝑛 = 3 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 (𝑁 < 𝑡𝑎𝑟𝑔𝑒𝑡𝑁 ,
1,  𝑖𝑓 𝑎𝑐𝑡𝑖𝑜𝑛 = 3 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 (𝑁 > 𝑡𝑎𝑟𝑔𝑒𝑡𝑁
10,  𝑖𝑓 𝑎𝑐𝑡𝑖𝑜𝑛 = 4 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 (𝑁 < 𝑡𝑎𝑟𝑔𝑒𝑡𝑁
1,  𝑖𝑓 𝑎𝑐𝑡𝑖𝑜𝑛 = 4 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 (𝑁 > 𝑡𝑎𝑟𝑔𝑒𝑡𝑁

8,  𝑖𝑓 𝑎𝑐𝑡𝑖𝑜𝑛 = 4 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 (𝑁 = 0 ∧ 𝑃 = 0 ∧ 𝐾 = 0)

  
 
(12) 
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The next reward is based on the journal [40] that evapotranspiration (ET) has an effect on the 

evaporation of soil nutrients and soil moisture, therefore a reward is made based on ET using the Hargreaves 

Method, namely: 

 𝐸𝑇0 = 0.0023 ⋅ (𝑇avg + 17.8) ⋅ (𝑇max − 𝑇min)
0.5 ⋅ 𝑅𝑎   (13) 

The Reward function is: 

 𝑟𝑒𝑤𝑎𝑟𝑑 𝐸𝑇 = {
2, 𝑖𝑓 3 < 𝐸𝑇 < 5
−2, 𝑖𝑓 𝐸𝑇 < 3 𝑜𝑟 𝐸𝑇 > 5

 (14) 

Solar radiation (Ra) is set to a default value of 0.0820 MJ/m²/day, based on [47], which represents 

typical solar radiation in Indonesia. Meanwhile, the maximum, minimum, and average daily temperatures 

are taken from the state after the agent takes an action. 

The reward function in this study focuses on two key aspects: Action and Evaporation. These aspects 

are designed to encourage optimal fertilization strategies that ensure balanced nutrient supply while considering 

environmental factors. The total reward is calculated as follows: 

 total reward = clip(reward_npk + et_reward, −10,10)   (15) 

With this reward system, the model is expected to be able to learn fertilization decisions that are responsive to 

plant conditions, thereby supporting efficient crop yield improvements. 

4. Termination Condition 

In this study the termination conditions will be to achieve the desired nutrient or environmental targets 

where plants can grow optimally with sufficient nutrient intake. There are Plant Growth Reaches Optimal 

Phase [48], Optimal Nutrient Conditions [49] and Maximum Day Limit in One Fertilization Cycle [50].  

 

2.2.5. Proposed Method 

A reinforcement learning framework is used by the Deep Q-Network (DQN) machine learning model 

uses a reinforcement learning framework to optimize fertilization practices in soybean crop systems . DQN 

maps states and actions into Q function values which quantify the relative importance of an action in a state 

using artificial neural networks. The intricacy of agricultural dynamics can be modeled using the neural 

network design. To improve learning stability, the experience replay approach saves and retrieves prior 

encounters. By carefully combining exploration and exploitation, DQN allows the model to update fertilization 

guidelines in response to continuous environmental interaction. By iteratively creating the best fertilization 

strategies, DQN seeks to increase soybean yields.  

In Fig. 2, this mechanism is shown. The agent use historical data samples and break the association 

between data in order to support convergence and stability in neural network training. This is accomplished by 

using a uniform random sampling technique to retrieve data for the minibatch and by saving data in the database 

throughout the reinforcement learning process. Additionally, to avoid model uncertainty resulting from initial 

conditions, the state of each episode is randomly initialized during training. then Fig.  3 above shows that t is 

the time the agent executes a process or action, s is the state, or the state of the environment, St is the condition 

at a specific moment, r is the reward, and πis the action policy that the agent executes by Q-Value. Play again 

the minibatch is a storage location based on Priority experience playback using Temporal Difference Error for 

training noisy neural networks, whereas the buffer is a storage location for action, reward, state, and future 

state.  

In Fig. 2 and Fig.  3, t is the time the agent performs an action or process, s is the state, namely the 

condition in the environment, St is the condition at a certain time, r is the reward, 𝜋 is the action policy that the 

agent performs based on Q-Value, Replay Buffer is a storage place for action, reward, state and next state, 

minibatch is a storage place based on Priority experience replay using Temporal difference Error for training 

noisy Neural networks.  

With an agent, the entire working environment procedure is shown in Fig.  3. the workflow of the agent 

in this system. The state is first initialized and stored in the experience replay buffer, which holds up to 64 

samples. Once the buffer exceeds this size, a mini-batch is randomly selected for training. The neural network, 

consisting of an input layer (S, a, R, S*), two hidden layers with 64 neurons each, and an output layer generating 

Q-values, updates the agent's policy. The agent selects an action, which is then processed by the environment 

to update the state and reward. This cycle continues until the termination condition is met. Table. 2 presents 

the DQN algorithm's pseudocode with PER and Noisy Layers. 

 

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&


160 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) ISSN: 2338-3070 

 Vol. 11, No. 2, June 2025, pp. 154-168 

 

 

Enhancing Soybean Fertilization Optimization with Prioritized Experience Replay and Noisy Networks in 

Deep Q-Networks (Alfian Fakhrezi)  

 
Fig. 2. Proposed Method 

 

 
Fig.  3. System process flow 

 

Table. 2. Pseudocode DQN-PER NN 
Algorithm 1: DQN – PER NN 

Initialize replay memory D with prioritized replay buffer to capacity N 

Initialize action-value function Q with Noisy Layers in network and random weights θ   
Initialize target action-value function Q with weights θ − = θ  

Set initial exploration rate  

For episode = 1, ..., M do 
  Collect the environmental condition and initialize state s 

  For t = 1, ..., T do 

   Select action at = argmax(Q(st ,at ;θ)) using the noisy Q-network for automatic   
 exploration 

   Execute action at in the environment  

   Observe reward rt and next state st+1   

   Calculate TD error 𝛿 = |𝑟𝑡 + 𝛾 · 𝑚𝑎𝑥(𝑄(𝑠𝑡 + 1, 𝑎; 𝜃 −)) − 𝑄(𝑠𝑡, 𝑎𝑡; 𝜃)|  

   Store (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡 + 1) in prioritized replay buffer D with priority δ α  

   If size of D > batch size: 
    Sample minibatch of experiences (sj ,aj ,rj ,sj+1) from D with probability   

 proportional to priority 

    Set target y j : 𝑦 𝑗 =  𝑟𝑗 𝑖𝑓 𝑠𝑗 + 1 is terminal, otherwise y j = rj + γ ·   

  𝑚𝑎𝑥(𝑄(𝑠𝑗 + 1, 𝑎; 𝜃 −)) 

    Compute importance-sampling weights for each sample  

    Calculate loss as  weighted MSE: loss = mean(weights·(y j −Q(sj ,aj ;θ))2 ) 
    Perform a gradient descent step on loss with respect to θ  

    Update priorities in D based on new TD errors for sampled transitions 

   Every C steps: 
    Clone weights of Q-network to target Q-network, θ − = θ 

    Decay exploration rate (optional if epsilon-greedy is combined):  

     ε = max(εmin, ε · εdecay) 
    Update state st to st+1 

  End for  

End for 
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3. RESULTS AND DISCUSSION  

The study presents results through metric evaluation, curve analysis, and yield prediction based on 

fertilization. To assess DQN's performance, we compare it with A2C and PPO. DQN uses Q-values for discrete 

actions, while A2C and PPO rely on policy-based methods for handling environmental variations [13]. This 

comparison helps identify each algorithm's strengths in optimizing cumulative rewards, yield outcomes, 

convergence speed, and computational efficiency.  

3.1. Evaluation Metrics 

In this journal, the evaluation each model is assessed based on the accumulated rewards obtained over 

1000 episodes with hyperparameters buffer size 15000, Batch size 32, Gamma 0.9, Learning rate, 0.0001, TAU 

0.01, epsilon end 0.02 and epsilon decay 0.995, which indicates how well each model optimizes the fertilization 

strategy in this scenario.  

 

3.1.1. Cumulative Reward 

In Fig. 4 (b), The results show that DQN achieves the highest cumulative rewards compared to PPO and 

A2C, reaching around 590,000 in the last episode. This indicates that DQN effectively learns and applies 

fertilization strategies, making it a stable and suitable choice. PPO also performs well, achieving around 

390,190 cumulative rewards, though still lower than DQN. Meanwhile, A2C shows the lowest performance, 

with a flatter reward curve, suggesting that it struggles to optimize fertilization effectively. This may be due to 

the actor-critic approach, which requires more training or tuning to perform optimally. 

 
 

(a) Average Reward 

 

(b) Cumulative Reward 

Fig. 4. Reward 

 

3.1.2. Convergence Time 

The average rewards of three reinforcement learning algorithms DQN, PPO, and A2C are compared in 

the graph below, in Fig. 4 (a). Each algorithm has a unique convergence pattern that indicates how quickly and 

well it adapts to a particular learning environment. The most promising results are shown by DQN or Deep Q-

Network. DQN reaches convergence and stabilizes at a reward value of around 600 in the first 100 to 150 

episodes. After this initial stage, its rewards are consistent and barely change. DQN’s excellent performance 

further indicates that this algorithm can effectively adapt to its environment and create a successful policy.               

Proximal Policy Optimization, or PPO, performs very well, although slightly worse than DQN. PPO stabilizes 

at an average reward of around 550 after taking 150–200 events to reach convergence. The benefits offered by 

PPO increase gradually before plateauing. Although the reward of PPO is slightly lower than that of DQN, its 

stability suggests that PPO also learns an efficient policy, although perhaps not as well as DQN. Fig. 4 shows 

the best results of hyperparameter tuning, while the results of testing other hyperparameters are shown in the 

Table 3. 

A2C is stable at episode 800 with its small reward only in the range of 150–200. This implies that A2C 

cannot adapt effectively to this environmental incentive system. Given its inability to maximize rewards 

efficiently in the same setting, A2C may not be the best choice, as indicated by its low reward stability. All 

things considered, DQN appears to be the best algorithm for this setting due to its fast convergence and higher 

reward rate.  

 

3.2. DQN PER NN Result 

From the evaluation in Fig. 4 (a) and Fig. 4 (b), DQN outperforms A2C and PPO in terms of reward 

acquisition and convergence speed. However, DQN has certain limitations such as falling into suboptimal 

actions. In this work, the enhancement in DQN is introduced by incorporating PER and Noisy Layers. The 

results of the combined methods are explained. 
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Table 3. Hyperparameter Result 
Buffer 

Size 

Batch 

size 

Gamma Learning 

Rate 

TAU Epsilon 

end 

Epsilon 

decay 

Average 

Reward 

Convergence 

time 

5000 32 0.9 0.001 0.01 0.01 0.995 500 850 

10000 32 0.95 0.0005 0.005 0.01 0.995 460 600 

20000 32 0.99 0.0001 0.01 0.01 0.995 390 400 

5000 64 0.9 0.001 0.01 0.05 0.99 530 529 

10000 64 0.95 0.0005 0.005 0.05 0.99 551 903 

20000 64 0.99 0.0001 0.01 0.05 0.99 521 870 

5000 128 0.9 0.001 0.01 0.01 0.995 498 763 

10000 128 0.95 0.0005 0.005 0.01 0.995 581 900 

15000 32 0.9 0.0001 0.01 0.02 0.995 600 125 

15000 64 0.95 0.0005 0.005 0.02 0.995 421 894 

5000 32 0.98 0.001 0.01 0.01 0.995 489 650 

 

3.2.1. Q – Value 

The distribution of Q-values in the DQN algorithm across 1000 training episodes without Prioritized 

Experience Replay (PER) and Noisy Layer is displayed in Fig.  5. It is evident that each action's Q-value is 

comparatively constant from the start and barely varies over the course of the episodes. This overly quick 

stability suggests that the agent might not have done enough exploring or gained knowledge from a wide range 

of experiences, which could impede the process of determining the best course of action. The agent is unable 

to concentrate on more instructive encounters and has less exploratory freedom when PER and Noisy Layer 

are absent. Without the Noisy Layer, exploration just uses the epsilon greedy setting without any noise variation 

in the network, and without PER, the agent learns from encounters at random without giving priority to the 

most important ones. In the meantime, the DQN algorithm's Q value variations with PER and Noisy Layer are 

displayed in Fig. 6.  

Fig. 6 shows the distribution of Q-values for the DQN algorithm using Prioritized Experience Replay 

(PER) and Noisy Layer for three different states (Tracked State 1, 2, and 3) over 1000 training episodes. It can 

be seen from each graph that the Q-values for each action (Action 0, Action 1, Action 2, and Action 3) have 

significant fluctuations, especially at the beginning of training, which gradually become more stable over 

episodes. These fluctuations highlight the active exploration early in the learning process, which is caused by 

the Noisy Layer. 

 

 

(a) Sample Random State 1 

 

(b) Sample Random State 2 
 

(c) Sample Random State 3 

Fig.  5. Change of Q in DQN algorithm 

 

PER helps the agent focus more on experiences with high damping levels so that the agent can adapt to 

the environment faster and reach the ideal Q faster.It can be observed from the graph that Action 3-the red line-

has consistently greater Q in respect to other actions-the agent chooses it constantly as the best among the 

actions in the current state. This more stable and dynamic Q-value distribution shows that agents with PER and 

Noisy Layer can make more diverse data explorations and usages, reducing risks of being stuck in suboptimal 

patterns. Without a doubt, this DQN is much more stable and explorative compared to the Q distribution from 
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the standard DQN algorithm sans PER and Noisy Layer. PER enables the agents to be more focused on 

important experiences. On the other hand, it encourages natural exploration by Q-value variation. That avoids 

suboptimal patterns for the agents and, as a consequence, accelerates the convergence of the process towards 

an optimal adaptiveness of Q-distribution in the environment. 

 
 

(a) Sample Random State 1 

 

(b) Sample Random State 2 
 

(c) Sample Random State 3 

Fig. 6. Change of Q in DQN with PER and Noisy Layer algorithm 

 

3.2.2. Generalization new data 
In this model validation, sed data from other SI-Soil test results, which were more or less still in 

Karanganyar. The results that we compared were the average reward, cumulative reward, and MSE which are 

shown in the Fig. 7. 

In Fig. 7 is a Cumulative Rewards Comparison graph, it can be seen that DQN-PER and NN have the 

highest cumulative reward acquisition compared to other models. Followed by DQN in Blue, then PPO in 

Green. DQN with PER and Noisy Nets show a stable increase in cumulative rewards, Then in the Average 

reward graph it can also be seen that the designed model is able to achieve convergence in 230 episodes, in 

contrast to the regular DQN algorithm which converges in episode 600 followed by the PPO algorithm which 

is more or less the same in episode 600 just converged. While A2C converges in episode 800. The MSE 

obtained in the proposed model is 2500, which is lower than the comparative method which is more than 3000. 

 
 

(a) Average Reward 

 

(b) Cumulative Reward Reward 

Fig. 7. Reward on New Data 

3.3. Action Distribution 

Based on the action distribution in Fig. 8, each reinforcement learning method has a different fertilization 

pattern. The DQN-PER NN model tends to choose SP36 (action 2) and a combination of fertilizers (action 4) 

as the main strategy, indicating that the fertilizer combination is more optimal with a balance according to the 

soil conditions.  

The standard DQN predominantly selects SP36 and KCL (actions 2 and 3), with the combination action 

(action 4) becoming more frequent towards the middle and end of the simulation. A2C demonstrates a more 

balanced distribution of actions across all fertilizer types, suggesting a more flexible fertilization strategy. In 

contrast, PPO exhibits a strong preference for actions 1 (urea), 2 (SP36), and 4 (combination) while maintaining 

a more stable decision pattern throughout the simulation period. Notably, all models favor the combination 

strategy (action 4), reinforcing its effectiveness in optimizing fertilization. Additionally, no model selects action 
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0 (no fertilization), indicating that each method prioritizes continuous fertilization to maximize agricultural 

yields. 

The results show that the model can accurately provide fertilizer recommendations based on the nutrient 

conditions present in the soil, demonstrating its ability to adapt to real-world agricultural environments. By 

considering key soil parameters such as nitrogen (N), phosphorus (P), potassium (K), pH, moisture, and 

climatic factors, the model ensures that fertilizer recommendations match actual crop needs at different growth 

stages. Furthermore, the model’s decision-making process mirrors real-world agronomic practices, where 

fertilizer distribution is dynamically adjusted based on environmental conditions. 

 

 
Fig. 8. Action Distribution 

 

In Fig.  9, illustrates that DQN-PER NN effectively increases nitrogen, phosphorus, and potassium levels 

after fertilization. However, periodic declines in nutrient levels are observed, which could be attributed to over-

fertilization, nutrient leaching, or interactions between soil properties and environmental conditions. This raises 

concerns about potential inefficiencies in nutrient utilization and environmental sustainability. A deeper 

analysis is required to determine whether these fluctuations are a result of excessive fertilizer application, soil 

absorption capacity, or external factors such as rainfall and irrigation. Furthermore, the study lacks a 

comparative evaluation against conventional fertilization practices, making it unclear how the proposed RL-

based fertilization strategy aligns with real-world agricultural constraints and farmer preferences. Addressing 

these limitations would enhance the interpretability and practical relevance of the findings. 

 
 

(a) Changes in potassium content (b) Changes in Phosphorus content  

 

(c) Changes in Nitrogen content 

Fig.  9. Changes in nutrients after action 
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3.4. Fertilizer Result 

The developed model enables efficient fertilization recommendations, as shown in Fig. 10. When tested 

on new data, DQN-PER NN provides optimal fertilizer amounts, leading to higher yields while using less 

fertilizer. This makes it both cost-effective and environmentally friendly. The bar chart shows that while all 

methods offer different recommendations, DQN-PER NN balances efficiency and productivity. It suggests 100 

kg/ha of Urea, 150 kg/ha of SP36, and 125 kg/ha of KCL—lower than conventional methods. Additionally, the 

predicted harvest yield is 1.95 tons/ha, higher than DQN, A2C, and PPO. These results confirm that DQN-PER 

NN optimizes fertilization better than other methods. This approach not only maximizes yields but also 

promotes sustainable resource use. By recommending effective fertilization, it helps farmers achieve higher 

productivity while using inputs responsibly. 

 
 

(a) Fertilizer Amount Recommendation 

 

(b) Crop Yield Prediction 

Fig. 10. Crop Yield Prediction and Fertilizer Recommendation  

 

4. CONCLUSION 

This study proposes and explores the application of Reinforcement Learning (RL) in a soybean 

fertilization recommendation system by integrating Deep Q-Network (DQN) with Prioritized Experience 

Replay (PER) and Noisy Networks (NN), demonstrating superior cumulative rewards and faster convergence 

compared to standard DQN, A2C, and PPO. The system optimally recommends 150 kg/ha of SP36, 100 kg/ha 

of urea, and 125 kg/ha of KCL—lower than the fertilization rates suggested by PPO (175 kg/ha urea) and A2C 

(160 kg/ha urea)—while still achieving a soybean yield of 1.95 tons/ha, higher than conventional methods. 

However, several limitations must be addressed, including the high computational cost of PER and Noisy 

Networks, which may hinder real-world adoption in resource-constrained agricultural settings. The model’s 

generalizability beyond soybean farming remains uncertain, as different crops and regions may require 

extensive recalibration due to variations in soil composition, climate, and nutrient demands. While the study 

suggests expanding the dataset with weather parameters, soil properties, and plant growth dynamics, it does 

not assess how these additions might impact model complexity and interpretability. Future research should 

explore transfer learning for cross-crop adaptability, irrigation integration for optimized resource use, and long-

term ecological impacts to ensure sustainable fertilization practices. Additionally, while reducing fertilizer use 

can mitigate environmental effects, excessive optimization for short-term yield gains may have unintended 

consequences on soil health and nutrient cycling, requiring further investigation. By addressing these 

challenges, RL-based fertilization systems can be refined to support precision agriculture and promote 

sustainable food production. 
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