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1. INTRODUCTION  

The cultivation of oil palm (Elaeis guineensis) is a cornerstone of economic prosperity in tropical nations, 

with Indonesia and Malaysia accounting for over 85% of global palm oil production [1], [2]. As the world’s 

most consumed vegetable oil, palm oil drives agricultural livelihoods, industrial growth, and export revenues 

exceeding $60 billion annually [3]-[6]. However, the industry’s sustainability hinges on precise harvesting 

decisions, where accurate ripeness assessment of oil palm fruit bunches (FFB) directly impacts oil yield, 

quality, and profitability [7], [8]. Conventional methods rely on manual visual inspections by trained graders—

a process plagued by subjectivity, labor intensity (30–60 seconds per bunch), and human error variability [9], 

[10]. Such inefficiencies contribute to annual oil extraction rate (OER) losses of 5–15% [10], [11], [12] 

Underscoring the urgent need for automated, objective solutions [6], [13]. 

Recent computer vision and deep learning advances offer transformative potential for precision 

agriculture. Convolutional neural networks (CNNs) have demonstrated remarkable success in automating crop 

monitoring tasks, such as disease detection [14] and yield estimation [15], [16]. While automated ripeness 

classification systems promise to enhance operational efficiency and standardize quality control [10], [11], 
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[15], [17]. Existing approaches—from threshold-based color analysis [18], [19], [20] to YOLO variants [14], 

[21]— struggle with robustness under real-world agricultural conditions. Key limitations include sensitivity to 

environmental variability (e.g., lighting, occlusion) and inadequate handling of nuanced inter-class distinctions 

(e.g., Partially Ripe vs. Fully Ripe stages) [4], [22], [23]. These challenges stem from three critical gaps: 

1. Biological Complexity: Subtle color and texture variations between ripeness stages, compounded by 

natural fruitlet pigmentation differences [24], [25]. 

2. Environmental Variability: Field obstructions (fronds, dust) and inconsistent illumination (canopy 

shadows) distort visual features [18], [26], [27]. 

3. Data Imbalance: Underrepresentation of economically critical minority classes (e.g., Overripe, Decayed) 

in datasets [10], [21], [28], [29]. 

The evolution of deep learning frameworks for agricultural applications has accelerated significantly from 

2021 to 2025 [30], [31]. YOLO-based architecture has gained prominence for their real-time inference 

capabilities, with YOLOv5 [32] achieving 82.5% mAP in oil palm ripeness classification [33], [34]. 

Concurrently, Faster R-CNN implementations demonstrate superior precision (86%) but exhibit limitations in 

processing speed that constrain field deployment [35]. Recent integration of attention mechanisms and feature 

pyramid networks has shown promising results in distinguishing subtle ripeness variations [36], yet challenges 

persist in feature representation and environmental robustness [37]. 

Although RetinaNet, with its feature pyramid network (FPN) and focal loss, addresses class imbalance 

and spatial resolution challenges [10], [38], [39], [40] Its reliance on static feature extraction limits 

discriminative power in variable field environments. Prior studies further highlight the inadequacy of global 

image features in capturing localized fruitlet characteristics [41], [42], [43], while datasets often lack diversity 

in lighting, angles, and geographic origins, hindering real-world generalization [44], [45]. 

To bridge these gaps, we propose CFO-RetinaNet, a novel framework integrating deformable 

convolutions and hybrid attention mechanisms to optimize multi-scale convolutional features for robust 

ripeness classification. Our research contributions are threefold: 

1. Architectural Innovation: A feature optimization pipeline combining adaptive feature fusion and dynamic 

focal loss, improving inter-class distinction by 18.5% over standard RetinaNet [42]. 

2. Robust Dataset: This is a publicly available dataset of 4,728 expert-annotated FFB images spanning five 

ripeness stages and diverse field conditions (lighting, occlusion). 

3. Scalable Impact: Demonstrated applicability to precision agriculture, achieving 83.6% mAP and 99% 

low-light accuracy, with potential to reduce annual yield losses by 15.7% through optimized harvesting. 

By addressing these challenges, CFO-RetinaNet advances sustainable palm oil production and sets a 

benchmark for AI-driven agricultural automation. 

 

2. METHODS  

The proposed methodology for oil palm ripeness assessment integrates a novel convolutional feature 

optimization framework with RetinaNet. Fig. 1 illustrates the workflow, which comprises four stages: (1) 

dataset collection and annotation, (2) data preprocessing and augmentation, (3) CFO-RetinaNet architecture 

design, and (4) model training and evaluation. 

 

 
Fig. 1. Workflow of the proposed CFO-RetinaNet framework for oil palm ripeness assessment 

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
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2.1. Dataset Description 

A novel dataset of 4,728 high-resolution (4K) RGB images was collected from oil palm plantations in 

Central Kalimantan, Indonesia, using multiple devices (smartphones, drones, and DSLR cameras) to ensure 

diversity in lighting, occlusion, and capture angles. Images were annotated in COCO 2017 format by three 

certified agronomists, categorizing fruit bunches into five ripeness stages (Fig. 2): 

Class Distribution 

• Immature: 1,024 samples (21.7%) 

• Partially Ripe: 1,156 samples (24.4%) 

• Fully Ripe: 1,302 samples (27.6%) 

• Overripe: 812 samples (17.2%) 

• Decayed: 434 samples (9.2%) 

Stratified splitting preserved class ratios: 

• Training: 3,310 images (70%) 

• Validation: 709 images (15%) 

• Testing: 709 images (15%) 

Limitations: Geographic specificity (Central Kalimantan) and device variability may affect generalizability to 

other regions. 

 

 
Fig. 2. Annotated examples of oil palm fruit bunches across five ripeness stages: (a) Decayed, (b) Fully Ripe, 

(c) Immature, (d) Overripe, and (e) Partially Ripe. Distinct visual features (color, texture) are highlighted 

 

2.2. Data Preprocessing & Augmentation 

Preprocessing Pipeline 

1. Resizing: Images standardized to 640×640 pixels using bicubic interpolation to maintain aspect ratio. 

2. Normalization: Pixel values scaled to [0,1] and normalised using ImageNet statistics: 

 
𝐼
norm

=
𝐼
raw

− μ

σ
,  μ = [0.485,0.456,0.406],  σ = [0.229,0.224,0.225]

 
(1) 

Augmentation Strategies 

Implemented via Albumentations to simulate field variability (Table 1). These augmentations address key 

challenges in agricultural imaging—lighting fluctuations, occlusions (fronds), and viewpoint diversity. 

 

Table 1. Data Augmentation Parameters 
Technique Parameters Purpose 

Horizontal/Vertical Flip p=0.5 Invariance to camera orientation 

Rotation θ∈[−20∘,+20∘] Robustness to fruit bunch angles 

Random Brightness/Contrast Δbright±0.2, Δcontrast±0.3Δcontrast±0.3 Lighting variation robustness 

Random Gamma Correction γ∈[0.7,1.5] Shadow/Highlight Compensation 

CutOut 3–5 rectangular masks (10% area) Occlusion simulation 

 

2.3. Model Architecture 

Backbone Network 

1. ResNet-50 with Feature Pyramid Network (FPN) was selected as the backbone due to its balance between 

computational efficiency and multi-scale feature extraction capability. FPN hierarchically integrates 

features from P2 (high-resolution) to P7 (low-resolution) layers, enhancing detection of small, densely 

clustered fruitlets. 

2. The CFO module enhances RetinaNet through: 

• Deformable Convolutions: Adapts kernel shapes to irregular fruitlet morphologies. 

• Hybrid Attention Mechanisms: Prioritizes biologically relevant features (e.g., carotenoid-rich 

hues) over environmental noise. 

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
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Detection Heads 

1. Classification Subnet: Four 3×3 conv layers (256 filters) → ReLU → Dropout (0.5). 

2. Box Regression Subnet: Smooth L1 loss for precise bounding box refinement. 

Anchors 

1. 9 anchors per spatial position (6 scales × 3 ratios) 

2. Optimized via k-means clustering on training data to match fruitlet size distributions 
The architecture of RetinaNet shown in Fig. 3. 
 

 
Fig. 3. The architecture of RetinaNet 

 

2.4. Training Strategy 

Implementation details shown in Table 2.  

Loss Configuration 

1. Focal Loss: Addresses class imbalance with parameters γ=2, α=1: 

 𝐿𝑐𝑙𝑠 = −α𝑡(1 − 𝑝𝑡)γ log(𝑝𝑡) , γ = 2, α𝑡 = 1 (2) 

2. Box Regression Loss: Smooth L1 loss for bounding box refinement. 

Focal loss prioritizes hard examples (e.g., minority classes like Decayed), while stochastic depth reduces 

overfitting to device-specific artifacts. 

 

Table 2. Implementation details 
Component Specification 

Hardware 2× NVIDIA T4 GPUs (16GB VRAM) 

Batch Size 4 (gradient accumulation over 4 steps to mitigate memory constraints) 

Optimizer AdamW (β₁=0.9, β₂=0.999) with weight decay (0.01) to prevent overfitting 

Learning Rate 1e-4 (cosine decay to 1e-6 over 50 epochs) 

Regularization Stochastic depth (20%) for improved generalization 

Epochs 50 (early stopping @ patience=5) 

 

2.5. Evaluation Metrics 

Primary Metrics 

1. Mean Average Precision (mAP): 

 

𝑚𝐴𝑃 =
1

𝐶
∑ ∫ 𝑝𝑐(𝑟)

1

0

𝐶

𝑐=1

 𝑑𝑟
 

(3) 

Evaluated at IoU thresholds 0.5–0.95 (0.05 increments). IoU > 0.5 aligns with agronomic standards for 

harvestable fruit bunches 

2. Class-Specific Scores: 

 
Precision: 𝑃 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃

 
(4) 

 
F1-Score: 𝑅 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 
 

(5) 
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Recall: 𝐹1 =

2 ⋅ 𝑃 ⋅ 𝑅

𝑃 + 𝑅

 
(6) 

Confusion Matrix 

• Per-Class Metrics: Precision/Recall thresholds >0.5 IoU 

• Background Handling: Separate class for false positives 

 

3. RESULTS AND DISCUSSION  

3.1. Overall Performance Analysis 

The Enhanced RetinaNet with convolutional feature optimization (CFO-RetinaNet) demonstrated robust 

performance across all evaluation metrics, achieving a mean average precision (mAP) of 83.6% and an F1-

score of 98.3% on the testing set. Compared to the baseline RetinaNet (81.2% mAP), CFO-RetinaNet reduced 

misclassifications by 18.5%, particularly improving precision for the Partially Ripe class (97.8%) and recall 

for Overripe (88.7%). Training dynamics revealed stable convergence, with loss decreasing sharply from 0.55 

to 0.2 within the first 10 epochs and stabilizing below 0.1 after epoch 30 (Fig. 5a). The mAP curve (Fig. 5b) 

showed steady improvement, reaching 80% by epoch 20 and maintaining consistency, indicating effective 

feature learning without overfitting. Model performance comparison shown in Table 3. 

Key Strengths: 

• Low-Light Robustness: The model retained 99% accuracy under low-light conditions, outperforming 

YOLOv5-based systems by 12%. 

• Real-Time Efficiency: Inference speed of 0.41s/image on embedded GPUs enables field deployment 

without cloud dependency. 

 

Table 3. Model Performance Comparison 
Method Accuracy 

RetinaNet ResNet50 (avg_pool layer) 99.21% 

RetinaNet ResNet50 (last conv layer) 99.41% 

 

The training loss curve exhibits consistent convergence, dropping sharply from 0.55 to 0.2 within the first 

10 epochs and gradually stabilizing below 0.1 after epoch 30 (Fig. 4 and Fig. 5). This convergence pattern 

indicates effective learning of discriminative features without overfitting. The mAP curve shows steady 

improvement, reaching 0.8 by epoch 20 and maintaining stable performance thereafter. 

 

 
Fig. 4. Training metrics over 35 epochs for baseline model without CNN optimisation showing: (a) 

Training loss curve, (b) Mean Average Precision (mAP) development, (c) Precision and Recall trends, and 

(d) F1 Score evolution 
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Fig. 5. Training metrics over 35 epochs showing (a) Training loss convergence, (b) Mean Average 

Precision (mAP) improvement, (c) Precision and Recall curves, and (d) F1 Score progression for the 

Enhanced RetinaNet with CNN optimization 

 

3.2. Class-wise Performance Analysis 

The confusion matrix reveals several key insights into the model's classification behavior (Fig. 6 and Fig. 7): 

• Fully Ripe: Highest accuracy (112 correct classifications, 5 errors), attributed to distinct carotenoid-rich 

coloration. 

• Partially Ripe: 108 correct identifications but 6 misclassifications as Fully Ripe due to overlapping color 

gradients. 

• Overripe: Lower recall (56 correct, 8 misclassified as Partially Ripe), reflecting challenges in detecting 

subtle texture changes. 

• Decayed: Minimal confusion (34 correct) but underrepresented in the dataset (9.2%), exacerbating false 

negatives. 

Precision-Recall Trade-offs: 

• Precision remained above 95% after epoch 15, while recall stabilized at 87% (Fig. 5c), indicating a bias 

toward minimizing false positives—critical for avoiding premature harvesting. 

• The F1-score progression (Fig. 5d) highlights balanced improvement, reaching 98.3% by training 

completion. 

Limitations: 

• Class Imbalance: The Decayed class (9.2% representation) suffered from higher false negatives, 

underscoring the need for oversampling or synthetic data generation. 

• Environmental Sensitivity: Severe occlusion (>70% coverage) reduced accuracy by 14%, as simulated by 

CutOut augmentations (Table 1). 

 

3.3. Model Convergence and Stability 

The training metrics reveal robust convergence characteristics: 

• F1 Score rapidly improves in the first 10 epochs, reaching 0.90, and steadily increases to 0.9839 by 

training completion 

• Precision shows consistent improvement, stabilising above 0.95 after epoch 30 

• The model maintains stable performance across the final 35 epochs, indicating proper regularisation and 

feature learning 
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Fig. 6. Confusion matrix showing the classification performance across five ripeness categories 

(Decayed, Fully Ripe, Immature, Over Ripe, and Partially Ripe) using the Enhanced RetinaNet model 

without CNN optimisation. The diagonal elements represent correct classifications, while off-diagonal 

elements show misclassifications 

 

 
Fig. 7. Confusion matrix showing the classification performance across five ripeness categories 

(Decayed, Fully Ripe, Immature, Over Ripe, and Partially Ripe) using the Enhanced RetinaNet model with 

CNN optimization. The diagonal elements represent correct classifications, while off-diagonal elements show 

misclassifications 
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3.4. Agricultural Implementation Impact 

The enhanced model's performance has significant implications for precision agriculture: 

• The high precision (0.9786) ensures reliable ripeness classification, reducing harvest timing errors 

• Strong recall (0.8868) indicates effective detection of various ripeness stages, crucial for optimising harvest 

schedules 

• The model's ability to distinguish between adjacent ripeness stages (as shown in the confusion matrix) 

supports precise harvest timing decisions 
Sample predictions showing successful detection and classification across all ripeness categories shown in 

Fig, 8. 

 

 
Fig. 8. Sample predictions showing successful detection and classification across all ripeness categories: (a) 

Decayed, (b) Fully Ripe, (c) Immature, (d) Over Ripe, and (e) Partially Ripe oil palm bunches. Green boxes 

indicate ground truth, while red boxes show model predictions with confidence scores. 

 

3.5. Comparative Analysis with State-of-the-Art Methods 

As shown in Table 4, CFO-RetinaNet outperformed existing models across all metrics, achieving 83.58% 

mAP—a 1.08% improvement over YOLOv5 (82.5%) and 7.18% over Faster R-CNN (76.4%). Key 

comparisons include: 

1. YOLO Variants: While YOLOv8s Depthwise achieved faster inference (0.29s/image), its mAP (81.2%) 

lagged due to reliance on global features, which inadequately captured localized fruitlets. 

2. Efficiency vs. Accuracy: MobileNetV2-SSD prioritized computational efficiency (82.15% accuracy) but 

struggled with nuanced inter-class distinctions (74.5% mAP). 

3. Agricultural Specificity: PalmYOLO (78.9% mAP) and Faster R-CNN (76.4%) lacked dynamic feature 

adaptation mechanisms, limiting robustness to occlusion and lighting variability. 

CFO-RetinaNet’s higher computational cost (2× NVIDIA T4 GPUs) is justified by its precision-critical 

agricultural applications, where misclassification costs outweigh hardware expenses. 

 

Table 4. Comparative analysis underscores CFO-RetinaNet’s superiority in balancing accuracy and 

robustness, despite higher computational demands. 
No Reference Method mAP (%) F1-Score (%) Accuracy (%) 

1 [46] MobileNetV1 65.3 72.4 75.2 

2 [47] SSD 71.25 83.16 85.4 

3 [38] MobileNetV2-SSD 74.5 78.3 82.15 

4 [48] Faster R-CNN 76.4 80 84.5 

5 [49] PalmYOLO 78.9 91 89.3 

6 [50] YOLOv4 79.8 92.5 93.4 

7 [51] YOLOv8s Depthwise 81.2 94.8 95.1 

8 [52] YOLOv7 82 94 96.5 

9 [53] YOLOv5 82.5 95.63 98.56 

10 Proposed Model Enhanced RetinaNet 83.58 97.75 99.41 

 

3.6. Practical Implications for Precision Agriculture 

The model’s high precision (97.86%) and recall (88.68%) translate to tangible benefits: 

1. Yield Optimization: Reducing harvest timing errors could mitigate annual yield losses by 15.7%, 

equivalent to $9.4 billion in Indonesia’s $60 billion palm oil industry [3]. 

2. Labor Cost Reduction: Automating grading (30–60 seconds/bunch manually) saves ~2,000 labor 

hours annually per 100-hectare plantation. 

3. Sustainability: Aligns with UN Sustainable Development Goals (SDGS) by minimising 

overharvesting and supporting climate-resilient practices. 
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Scalability: The framework’s modular design allows adaptation to other perennial crops (e.g., coffee, 

mangoes) requiring ordinal maturity classification. 

 

3.7. Limitations and Future Directions 

Despite strong overall performance, several areas warrant further investigation: 

• The relatively lower recall for Over Ripe classes suggests room for improvement in detecting late-stage 

ripeness 

• Class imbalance remains a challenge, particularly for the Decayed category, with only 34 samples 

• Environmental factors such as severe occlusion and extreme lighting conditions may still affect 

performance 

Future work should focus on: 

• Expanding the dataset with more samples of underrepresented classes 

• Implementing additional data augmentation techniques for challenging environmental conditions 

• Exploring ensemble methods to improve classification accuracy further 

The results demonstrate that the Enhanced RetinaNet with convolutional feature optimisation provides a 

reliable automated oil palm bunch ripeness assessment solution. However, continued refinement could further 

improve its practical application in precision agriculture. 

 

4. CONCLUSION 

The Enhanced RetinaNet with Convolutional Feature Optimization (CFO-RetinaNet) presents a 

significant advancement in automating oil palm fruit bunch (FFB) ripeness classification, addressing critical 

challenges in precision agriculture. By integrating deformable convolutions and hybrid attention mechanisms, 

the framework achieves a mean average precision (map) of 83.6% and an F1-score of 98.3%, outperforming 

state-of-the-art models like YOLOv5 (82.5% map) and Faster R-CNN (76.4% map). Key innovations include 

a feature optimization pipeline that reduces inter-class misclassifications by 18.5% and a robust dataset of 

4,728 expert-annotated images capturing diverse field conditions. The model’s real-time inference capability 

(0.41s/image on embedded GPUs) and low-light robustness (99% accuracy) demonstrate its practicality for 

deployment in resource-constrained agricultural environments. 

This study contributes novel methodologies to the domain of AI-driven precision agriculture. The CFO-

RetinaNet architecture advances feature representation for nuanced agricultural tasks, while the publicly 

released dataset sets a benchmark for ordinal maturity classification. By automating error-prone manual 

grading, the framework directly addresses the palm oil industry’s annual yield losses of 5–15%, potentially 

preserving up to $9.4 billion in Indonesia’s $60 billion industry. Its alignment with UN Sustainable 

Development Goals (SDGS) is evidenced through reduced overharvesting, optimised resource use, and support 

for climate-resilient practices. 

However, the study has limitations. Performance degrades under extreme occlusion (>70% coverage) and 

heterogeneous fruitlet maturation within single bunches, reflecting gaps in handling complex biological 

variability. The dataset’s geographic specificity (Central Kalimantan) and class imbalance constrain 

generalizability, particularly for the Decayed category (9.2% representation). Additionally, the computational 

cost of dual NVIDIA T4 GPUS may limit accessibility for small-scale farmers. 

Future research should prioritise expanding multi-regional datasets, creating synthetic data via generative 

adversarial networks (GANS), and integrating hyperspectral imaging to capture biochemical ripeness 

indicators (e.g., carotenoid levels). Edge-computing optimizations for low-cost devices (e.g., Raspberry Pi, 

Jetson Nano) could democratize access, while ensemble methods combining CFO-RetinaNet with vision 

transformers may enhance occlusion resilience. These advancements will further bridge the gap between AI 

innovation and agricultural practicality, fostering scalable, sustainable farming ecosystems. 

In conclusion, CFO-RetinaNet exemplifies how tailored deep learning solutions can transform agri-

industrial workflows. By reducing reliance on subjective manual inspections and enhancing harvest precision, 

this work elevates palm oil production standards and paves the way for AI-driven maturity assessment in other 

perennial crops, catalyzing a paradigm shift toward data-driven, sustainable agriculture. 
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