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1. INTRODUCTION  

A systematic process of software development comprises user requirements analysis, design, 

development and testing of software to achieve efficient requirements fulfillment [1]. Through refactoring 

which serves as the essential practice of this process programmers improve program code quality by making 

internal changes that leave external functionalities intact [2]. 

Refactoring technologies serve a crucial part in enhancing maintenance and efficiency of code while 

enabling developers to eliminate duplicated code and simplify program complexity[3]. Staff undertake manual 

refactoring operations by exploiting their expertise leading to extended durations and elevated probability of 

mistakes [4]. The examination and strategic functioning of software improvement tasks has attracted research 

into artificial intelligence (AI) solutions for automated code analysis and decision-based procedures [5]. 

 Machine learning which is part of artificial intelligence demonstrates successful capabilities in 

identifying refactoring possibilities [6]. through software metric pattern and historical data assessment. system 

learning capabilities through ML enable the processing of available data with automated output generation 

without human involvement [7]. 

The prediction uses different types of ML models according to numerous research studies. Real-world 

projects face difficulties when implementing these models because their dependent requirement for big datasets 

with high quality for optimal accuracy performance .Such models demonstrate reduced functionality since they 

lack capabilities to choose optimal aspects for subset selection and effective generalization across software 

programs [8]. 

The field of meta-learning emerged to tackle the existing issues. Through meta-learning models access 

knowledge gained from comparable tasks enabling them to handle fresh data circumstances with limited 

sample sizes [9]. This research introduces a hybrid meta-learning framework which unites stacking and 
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boosting classifiers with feature selection through the Lion Optimization Algorithm (LOA). The research aims 

to boost method-level refactoring prediction by improving feature relevance and reducing false positives and 

enhancing generalizability. 

This research contributes to two main points: a prediction system using meta-learning techniques that 

combine reinforcement with stacking classifiers, and the use of a lion optimization algorithm to optimize 

models and efficiently select features. The research team conducted experiments on four open-source Java 

projects, achieving quantitative improvements in F1 scores and prediction accuracy. 
 

2. RELATED WORKS 

In 2017 Surika and Kumar applied their method to discover the most suitable areas for refactoring at the 

class level. A machine learning model uses Least Squares Support Vector Machine (LSSVM) as its base 

algorithm for operation. The model received its initial parameters along with training through seven open 

source software systems database. The researchers trained LS-SVM through the implementation of linear along 

with radial basis function (RBF) and polynomial functions. The model achieved 0.97 of accuracy through RBF 

while performing its evaluations. The model displayed competitive performance by both predicting refactoring 

and determining correct refactoring type applications to improve software code quality and efficiency levels  

[10]. 

The study team set out to create a method which detects the necessity of source code refactoring at the 

method level. The proposed model was built through implementation with five different open-source 

frameworks. Research-based analysts developed a model using ten machine learning classifiers which included 

logistic regression (LR), Naive Bayes (NB), random decision forest (RF), adaptive boosting (AdaBoost), 

artificial neural network using gradient (ANN+GD), Bayesian network (BN), radial basis function (RBF), 

multilayer neural network (MLP), boosting using logistic classification (LoG), and artificial neural network 

using Levenberg-Marquardt algorithm (ANN+LM). Each classifier underwent training through the provided 

dataset while evaluation happened through an accuracy performance assessment. Among the seven classifiers 

the AdaBoost classifier along with the ANN+GD classifier demonstrated the highest evaluation scores by 

reaching 98.16% accuracy and 98.17% accuracy respectively. The proposed model succeeded in effectively 

predicting code refactoring requirements at the method level according to study results [11]. 

Research studies have proven that refactoring methods deliver beneficial results for maintaining accurate 

programs. The introduction of machine learning methods for picking proper refactoring candidates achieved 

successful identification of optimal changes through algorithms established for class, method, and variable 

refinement. The proposed model uses logistic regression (LR) as well as naive Bayes (NB) and support 

regression machine (SVR) and decision tree (DT) in combination with random forest (RF) and neural network 

(NNA) algorithms. The training process used a substantial dataset derived from Apache, F-Droid as well as 

from GitHub. The evaluation of the models reached an accuracy metric which exhibited a ratio above 0.90. 

According to the obtained results the random forest algorithm proved most effective at predicting refactoring. 

The proposed model proves that machine learning algorithms achieve effective prediction of refactoring tasks 

and assist developers with refactoring decision-making [12]. 

The precision of static type information prediction in probability analysis during restructuring heavily 

depends on the research-developed algorithm described in Akour et al., 2022. The supports mechanism 

regression algorithm obtained dataset information through four open-source system sources: ANTLR4, JUnit, 

MapDB and McMMO. Performance assessment of the algorithm together with training occurred using these 

specific data points. The implementation of SVM algorithm began independently before researchers integrated 

it with optimization algorithms such as GA and WA to enhance output. The evaluation depended on accuracy 

as the main performance metric. The SVR algorithm achieved 0.90 accuracy on MapDB and McMMO dataset 

while reaching 0.93 accuracy through the SVM and GA and WA algorithm combination. The proposed model 

was subjected to performance testing alongside Naive Bayes while a comparison took place with the state-

based nearest neighbor and random decision tree and random decision forest methods. The research findings 

suggest that using SVM in combination with GA and WA brings significant improvements to prediction 

accuracy in restructuring operations above traditional predictive models [13]. 

 

3. SOFTWARE RESTRUCTURING 

The structural changes conducted in a program through refactoring result in increased efficiency and 

maintainability without modifying how the program operates externally.The reason for refactoring is to address 

technical debt resulting from the accumulation of modifications and shortcuts during the development process. 

The refactoring process involves several steps that are followed in the code to implement the required 

modifications and improve the code [14]. 

The following are the stages of the refactoring process [15]: 

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
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Selecting the code that must be refactored: The evaluation process searches for code sections needing 

modification in order to enhance code maintainability. 

Determining appropriate refactoring techniques: Restructuring involves many types, and the appropriate 

type is determined based on the type of problem identified. 

The refactoring techniques applied must maintain the program's behavior: The main purpose of using 

refactoring techniques involves improving code quality levels with no negative effects on original 

functionality. 

Applying refactoring techniques: The modifications are implemented using appropriate restructuring 

methods.  

Enhancing the assessment process rallies to determine both internal and external software quality effects 

of refactoring Methods: The impact of changes on code quality is measured using software metrics. 

Keeping the integrity between the software that was refactored and other software parts: After modifying 

the code, it must not conflict with other modules in the system. Fig. 1 The following figure shows a flowchart 

of the stages of the software refactoring process.  

 

 
Fig. 1. The flowchart of Refactoring Process 

 

4. METHODOLOGY OF THE PROPOSED MODEL 

The proposed methodology introduces a machine learning framework designed to enhance prediction of 

refactoring opportunities at the curriculum level. This framework combines two ensemble learning strategies—

stacking and boosting—with a feature selection mechanism based on the Lion optimization algorithm (LOA) 

applied to a dataset to extract features that significantly impact model accuracy. This approach selection basis 

stems from the unique beneficial features that each component brings to the model. Sequential prediction error 

correction along with enhanced accuracy stands as a known strength of AdaBoost and CatBoost and LightGBM 

while stacking uses a meta-learner to integrate multiple base classifiers including logistic regression support 

vector machines and random forests to enhance generalization. The model becomes more efficient at detecting 

linear and nonlinear data patterns because both model types are included in its design. The Lion optimization 

algorithm selects influential features for use by conducting feature selection. Analysis professionals selected 

this approach because it showed excellence in the management of intricate feature domains which standard 

methods often struggle to handle. The data processing starts with cleansing of primary data obtained from four 

open source Java projects JUnit, McMMO, MapDB and ANTLR4. The data cleaning process follows 

standardization before a LOA algorithm selects features with the greatest relevance. Feature selection 

concludes followed by training-test set separation of the data. The selected features get utilized for training 

both stacking and boosting models before their prediction outputs combine to generate end results. Each model 

uses a grid search optimization process to determine the best values for tree numbers combined with learning 

rate along with regularization parameter adjustment. The main aim is to enhance performance while 

minimizing overfitting occurrences. A set of standard performance criteria that includes precision, accuracy, 

recall, and F1 score serves in determining the effectiveness of the proposed framework through final evaluation. 

Fig. 2 illustrates flowchart of the stages of the proposed approach. 

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&


ISSN: 2338-3070 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) 279 

  Vol. 11, No. 2, June 2025, pp. 276-289 

 

 

Enhancing Refactoring Prediction at the Method-Level Using Stacking and Boosting Models (Shahbaa I. Khaleel) 

 
Fig. 2. The flowchart of Proposed Approach 

 

5. DATASET AND PREPROCESSING 

The data collection stage is a crucial stage. dataset used in this research includes data related to software 

projects. This dataset includes experimental refactorings of four open source software projects: JUnit, 

McMMO, MapDB, and ANTLR4. Named DTS1, DTS2, DTS3, and DTS4, respectively, it includes features 

representing software characteristics and statistics that determine the likelihood of system components 

requiring refactoring.  

The data was preprocessed to ensure that the data is ready, of good quality, and achieves a balanced 

distribution of classes. This dataset is then used to train models, which contributes to improving the 

performance of models used to predict refactoring. Unnecessary columns, such as Long-Name, Parent, and 

Path, were removed to reduce complexity and noise in the models, as they do not contribute to the refactoring 

prediction process. 

The focus was solely on features that support the prediction process. The target values are converted to 

binary values of zero or one in order to help the model in binary classification, This value of 1 signifies class 

restructuring necessity whereas a value of zero indicates no need for restructuring making data processing 

easier for the model. Table 1 shows description of the data set. 

 

Table 1. Description of the Data Set 
Data Set No. oF Attributes Instances No. oF Refactoring 

DTS1 84 3,298 40 
DTS2 84 2,280 12 
DTS3 84 3,501 3 
DTS4 84 2,531 5 

 

6. FEATURES SELECTION 

Features represent software metrics, and since they influence each other, incorrectly selecting metrics can 

lead to poor predictive models [16]. Feature selection increases the efficiency of the model and helps enhance 

its ability to classify effectively. Four traditional approaches exist for feature selection consisting of filter 

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
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methods and wrapper methods and embedded methods and hybrid methods. Although these methods are 

effective, when dealing with large and complex datasets, they can be inefficient and produce unsatisfactory 

results. Therefore, swarm intelligence (SWI) has been used as an effective approach and an advanced 

alternative to traditional methods [17]. The foundation of swarm intelligence uses limited capability and simple 

behaviors among individuals like the ants to complete complicated tasks via their coordinated social methods 

even though their actions are basic [18] Swarm intelligence algorithms identify optimal problems solutions 

through simulations of collective natural organism behaviors such as ant colonies and bird flocks for complex 

task improvement [19].  

Swarm intelligence functions through fundamental principles including the proximity principle for local 

interactions with environments and the information quality principle for efficient solutions together with the 

diverse response principle for change adaptiveness and the stability principle for maintaining equilibrium and 

the adaptive principle for different environment responses [20]. Swarm members communicate to each other 

by direct methods like visual signals or auditory messages such as the bee dance in addition to indirect methods 

such as environmental changes through pheromone use by ants. The behaviour of different agents is affected 

by environmental changes through communication across the environment  [21]. 

 

6.1. Lion Optimization Algorithm 

The Lion's algorithm was introduced as an optimization algorithm by Rajakumar, after which 

improvements were made to the algorithm and many algorithms were developed based on the basic principles 

of the Lion's algorithm [22]. It represents an improved model derived from nature, mimicking the behavior of 

lions. This algorithm is mainly used to address optimization tasks by using two focused steps: territorial capture 

with territorial defense. Lions are characterized by a wonderful social behavior called pride, where 1-3 pairs of 

lions are included within the pride, meaning it will include adult males, a number of females, and cubs. Each 

pride has a territory called the area of influence, and the strongest lion is the one who controls the territory and 

is called the territorial lion. It must be defended against nomadic or attacking lions, called the nomadic lions. 

This defense is called territorial defense. When the territorial lion wins, the territory remains as it is. However, 

when the nomadic lion wins, it will chase or kill the territorial lion. The cubs of the defeated lion are also killed, 

and the dominant lions associate with the females, and new offspring are formed. These processes are repeated 

until the cubs reach adulthood. If the cubs are stronger, they will take over the territorial lion and associate with 

the females. New cubs are born and territorial conquest occurs [23]. The algorithm makes use of complex 

cluster behaviors which interact with one another. The approach effectively balances discovery with 

optimization because it works with many different types of optimization problems [24].   

The following is an explanation of the steps of the LOA algorithm [25]: 

Step 1: Initialization: Initially, a random population is created in the solution space, where each lion represents 

a solution to an 𝑁𝑣optimization problem, where the lion is L= 𝑥1 , 𝑥2  …𝑥𝑁𝑣
   

 L = 𝑥1 (1) 
The cost (fitness value per lion) is calculated by evaluating the cost function shown as follows:  

 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑙𝑖𝑜𝑛 = 𝑓 (𝐿) =  𝑓(𝑥1  , 𝑥2 , 𝑥3   … . . 𝑥𝑁𝑣
  ) (2) 

 

𝑀𝑝𝑜𝑝solutions are generated randomly in the  Exploration range. M% of the solutions (lions), Select it 

randomly and are called M. The remaining solutions are divided into groups p. For each solution in the LOA, 

a specific sex remains constant While optimizing. In each pride, approximately 75-90% of the output from the 

previous stage is identified as female lions, At the time when you are remaining lions are males. During the 

search process, Lion detects the best place based on the selected places. For each group, a region p is created 

by the locations selected by its members. 

Step 2: Hunting: for each p, a certain number of female lions search for victim for feeding the individuals in 

the p. Complex methods are used to monitor and capture their victim. Stander divided lions into several classes 

based on the role they play. During a hunt, each lioness adjusts her position based on her own or other 

individuals' position. As a result, Some hunting lions surround the victim and launch an attack from the opposite 

direction. The law of attraction is based on conflict-based learning. H are divided classes. The middle class 

includes the highest degree of fitness, and the left side and right side  are randomly assigned to each class 

without prior determination. During a hunt, as the hunter's fitness increases, the victim flees to a new place, 

and represented as follows: 

 𝑃𝑌′ =  𝑃𝑌𝐼 +  𝑟𝑎𝑛𝑑(0,1) ×  𝑃𝑌 × (𝑃𝑌 − 𝐻) (3) 
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where PY refers to the current place of the victim, H refers to the new place of the hunter attacking the victim, 

PYI refers to percentage improvement In the ability hunter.   

The location belonging to the left side and the right side is calculated as shown in the following equation:   

  𝐻′ =   {
rand((2 × PY − H), PY), (2 × PY − H) < PY
rand(P, (2 × PY − H)), ((2 × PY − H) > PY

 
(4) 

 New sites for concentrated hunters are created according to the following equation: 

  𝐻′ =   {
rand(H , PY), H < PY
rand(PY, H), H > PY 

 
(5) 

The function rand() generates numbers by random within a specific range.  

Step 3: Moving to a Safe Place: Each group's p-zone contains the best personal positions acquired by each 

group member. This helps the Law of Attraction store the best solutions previously acquired over a period of 

time, which can be useful for improving solutions according to the Law of Attraction. Therefore, the new 

position of the female lion is determined according to the following equation: 

 FL′ = FL + 2C × rand(0,1){K1} + U(−1,1) ×tan(𝜃) × rand(0,1) × {K} (6) 

 {K1}.{K2}=0, || K2 ||=1 (7) 

where FL is current location represents the lioness, C indicates the area between the location of the FL and the 

point determined by championship in the pride area, K1 represents a direction whose starting point is the female 

lion's oldest location and directed toward the select place. K2 is vertical to K1. 

Step 4: Roaming: Every lioness roams the pride space. resembles the natural model, a lion selects a random 

portion of the pride's territory, K. When a male identifies a previously unexplored site that is better than the 

one he currently occupies, he updates the solution he previously visited to a better one. Machine learning (ML) 

uses the law of attraction (LOA) to randomly distribute exploration areas and avoid the trap of local optima. 

New sites are selected for ML according to the following equation: 

 𝐿𝑖𝑗
′ = {

𝑝𝑟𝑖  if >   𝐿𝑖𝑜𝑛𝑖𝑗  

𝑅𝐴𝑁𝐷𝑖        other wise
 

(8) 

where 𝐿𝑖𝑜𝑛𝑖represents the current position of the lion, j is a dimension, 𝑟𝑎𝑛𝑑𝑗 represents Irregular number 

within [1,0], RAND represents a randomly generated direction in the Exploration area, 𝑝𝑟𝑖  represents a 

possibility calculated independently for each lion ML, as shown in the following equation: 

 𝑝𝑟𝑖 = 0.1 + min(0.5,
𝑀𝐿𝑖 − 𝐵𝑒𝑠𝑡𝑀𝐿

𝐵𝑒𝑠𝑡𝑀𝐿
) (9) 

where 𝑀𝐿𝑖, 𝐵𝑒𝑠𝑡𝑀𝐿represent the temporal location costs lion in LN. 

Step Five: Bonding: This process ensures the survival of lions and provides an opportunity for them to bond 

with other members. In each pride, a percentage of the female lionesses bond with a male lion or several 

randomly selected resident males from the same pride to produce offspring. The law of attraction transfers 

information between the sexes during bonding, and new cubs then inherit the personality of both sexes. 

Step 6: Defense: In each p, when a lioness reaches completion, he becomes aggressive and battles with other 

lioness in the p. The lion that loses the fight give up the p and becomes ML. Similarly, ML male is  has great 

physical strengthWhen a DL male fights in p, the ML becomes DL, and vice versa. Defense plays a role in 

maintaining the strength of male lions. 

Step 7: Migration: Depending on the movement and migration that from one area to another, this will aim to 

enhance pride security. Female lions from each area P are counted, and then a small number of lionesses are 

randomly selected to form ML. Female Lions are ranked based on their fitness value. 

Step Eight: Termination: The stopping criterion represents a condition for determining when the algorithm 

stops searching for solutions. The stopping criterion may be a specific period of time for the algorithm to stop, 

or the algorithm stops after a specific number of iterations, or it stops when no progress is made in a specific 

number of iterations. Fig. 3 shows the flowchart for implementing the steps of the LOA algorithm. 
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Fig. 3. Research Methodology 

 

7. DATA SET SPILT 

At this stage, the data will be split into two class: the training class and the test class. The training class 

is used to train the proposed model, the test class is used to evaluate the proposed model. According to previous 

machine learning research, the split ratio was 80% for training data set and 20% for test data set. The 

appropriate ratio is determined based on the problem or available dataset. Here, the split was made so that the 

training data ratio was 80% and the test data ratio was 20%. This split ratio was chosen because it yielded better 

results and was appropriate for the dataset. 

 

8. MODEL TRAINING 

At this stage, machine learning algorithms are trained to predict refactoring probabilities. A stacking 

classifier and a boosting classifier are used. 

First: The stacking model: This is a commonly used technique in meta-learning, introduced by Wolpert . 

Machine learning problems benefit from this method because it decreases the occurrence of errors during 

generalization. This technique represents an ensemble framework, and is considered a heterogeneous method 

because it relies on training base models and then combining their predictions. A meta-model is then trained 

on the base models' prediction outputs. Stacking models achieve better performance because they exploit the 

variance and differences between base models [26]. The stacking approach requires base classifiers or zero-

level models that work together with a higher-level learning algorithm named meta-learner. The first-level 

model receives predictions from base models to develop a combination strategy which enhances the predictive 

power of the outcomes. The training data serves to prepare the base models before the system tests against new 

data that remained out of initial training. A new data dataset is created by using the output predictions and 

actual values from the data which gets used to train the higher-level model also known as the first-level 

classifier [27].The model structure consists of two steps [28]: 

The first phase included four basic models, which were implemented and are known as basal learners: 

Logistic Regression (LR): It is one of the supervised learning techniques, It is primarily used in the field of 

classification, where the goal is to predict the probability of a value or instance belonging to a specific class or 

not [29] Logistic regression operates as an effective mode to forecast chronic disease risk but shows 

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
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performance levels similar to those of contemporary machine learning systems. Scientific research panels 

confirm that logistic regression stands together with neural networks as leading approaches for making such 

predictions [30].The following is an explanation of the Logistic Regression equation [31]: 

 𝐻(𝑥) =   𝛽0  +  𝛽1 𝑋1  + 𝛽2 𝑋2   + ⋯.     + 𝛽𝑝 𝑋𝑝  (10) 
where   𝛽0represents the constant coefficient, 𝛽1represents the weights that reflect the effect of the     

independent variables on the model’s prediction. 

Extreme Gradient Boosting (XGBoost): is considered one of the clustering algorithms that relies on decision 

trees and uses the gradient boosting method. XGBoost relies on the principle of decision trees to represent 

potential decisions. Performance is improved by reducing errors using gradients. It also works to build 

sequential models to reduce errors. The system is improved by applying parallel processing and removing 

unnecessary branches from the trees to enhance efficiency, so it is considered one of the best options for 

classification and regression problems [32]. The objective function, which includes obtaining better 

predictions, works by minimizing the loss function. The objective function includes two parts: an error 

function, which captures the difference between the actual values and the previously predicted values, and a 

regularization function, which controls the difficulty of the trees to avoid excessive complexity. The following 

equation provides this [33]: 

 Oj(k)=M(k)+ U(k)  (11) 
where k represents the parameter that is modified during the training phase. M represents the loss function, and 

U represents the regularization function. XGBoost demonstrates excellent performance across financial 

services and healthcare together with supply chain management because of its successful implementation in 

different industries [34]. 

Redial Basis Function (RBF): The artificial neural network architecture is execute to regression  and 

classification Tasks. It is based on transforming input data into a multidimensional space using complex or 

nonlinear functions (radial basis functions), followed by a linear transformation to obtain the expected final 

output. The network architecture consists: the input layer, the intermediate layer, and the output layer. The 

inputs pass from the input layer to the intermediate layer, which contains radial functions, where the data is 

processed. The output layer is then applied to predict the final output [35]. RBFNNs operate as neural networks 

based on function approximation principles to predict nonlinear models between inputs and outputs within 

modeling systems [36]. 

Support Vector Classifier (SVC): It is considered one of the support vector machine methods. This method 

is distinguished by its reliance on computational learning theory and its invariance in multiple domains, so 

classification can be performed on different features and with different sizes of training data [37]. The work of 

this algorithm revolves around identifying the best hyperplane, which is defined as the dividing line between 

data classes in a high-dimensional space. The hyperplane includes support vectors that represent data points 

that are adjacent to the hyperplane, while the margin represents the distance between the hyperplane and the 

support vectors. Increasing the margin ratio leads to reducing classification errors [38]. The algorithm applies 

to non-linear complex data (using a kernel) during classification problems with two or multiple outcome 

categories. Multilayer perceptron becomes a suitable choice for creating accurate classification models which 

show resistance towards over-learning [39]. 

In the second stage, the Logistic Regression (LR) algorithm was applied, which is known as the super-

learner, which is trained on the results of the base learners in order to obtain the final classification. 

Second: Boosting model: It is a sequential iterative ensemble method that works to reduce bias and variance 

by improving the performance of weak models. A series of weak models are created in such a way that each 

new model learns from the previous model's mistakes. The goal of this technique is to train several weak 

models in order to obtain a strong model. This technique helps improve accuracy and reduce errors. This model 

focuses on selecting misclassified data to train models on. That is, the first model will be trained on training 

data, the second model will be trained to correct the errors resulting from the first model. Therefore, it is 

considered an iterative algorithm, as the weights are adjusted based on the previous model [40]. The successive 

operation of the boosting algorithm starts with selecting an initial classifier to predict data from the entire 

dataset before moving on to error evaluation and weight adjustment. The algorithm determines errors of the 

first classifier after which misclassified items receive weighted increases for enhanced prioritization in future 

stages. A new classifier receives training which targets the mistakes from the preceding model for the next 

stage. A sequential pattern applies multiple times until performance reaches its maximum level. The building 

of the final model takes place by developing an average weight-based combination of all previous classifiers. 

Model performance accuracy in the final result becomes enhanced by giving more weight to the models that 
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demonstrate the best results [41]. The boosting model includes prominent algorithms that were applied in this 

research: 

Gradient Boosting (GB): It is considered one of the most effective machine learning techniques frameworks 

based on clustering algorithms and works on classification and regression tasks [42]. based on combining 

gradient descent with boosting techniques, and a strong model is formed by gradually adding weak learners 

[43]. Techniques that use a gradient algorithm build their models incrementally and make continual 

improvements by fixing the mistakes of existing models. The creation of Gradient Boosting emerged from 

adaptive boosting theory generalization and today shows capabilities of processing various loss functions 

effectively [44]. 

Adaptive Boosting (AdaBoosting): is one of the most widely used boosting techniques, resulting in more 

effective predictive models. This algorithm uses the entire dataset to train the classifier rather than randomly 

selecting samples, which makes it more efficient when data is limited. This algorithm also gives greater weight 

to misclassified samples, so the next model will focus on correcting these errors. In contrast, samples that were 

correctly classified will receive less weight [45]. The training process of AdaBoost algorithm involves 

continuous weight changes across samples but needs no understanding of the weak classifier learning process. 

AdaBoost mainly operates as a solution for classification tasks yet maintains a reputation for being simple to 

implement as well as quick. The main advantage of this algorithm consists of small configuration needs except 

for setting the iteration number. Any weak classification algorithm can integrate with the AdaBoost method 

since it needs no specific understanding of the algorithm's operational principles [46]. 

Light Gradient Boosting Machine (LGBM): A new approach to supporting gradients based on decision tree 

methods. This framework supports a set of algorithms such as GBM, Gradient Boosted Regression Tree 

(GBRT), and Multiple Regression Tree (MART). It is therefore scalable, robust, and efficient  [47]. The 

execution time together with prediction accuracy of GBDT deteriorates significantly when processing vast 

amounts of data. LightGBM solves the speed and accuracy issues by providing enhanced training performance 

that neither compromises prediction accuracy nor slows down the process. Continuous data values in 

LightGBM are transformed into histogram-based bins which decrease runtime complexity. The leaf-wise 

structure enables the most error-minimizing leaf to grow the most as opposed to level-wise expansion across 

all tree branches. The Exclusive Feature Bundling method combines sparse features to decrease their total 

number while averting the need for PCA techniques and minimizing data redundance [48]. 

Categorical Boosting (CatBoost): is an advanced high-performance automated algorithm belonging to the 

Gradient Boosting family. It creates an ensemble of weak decision trees to gradually improve classification 

performance. These trees are then combined iteratively, with residual values from the previous step used to 

improve the model at each step [49]. Artificial scheduling functions as the core principle of this method through 

data partitioning during training to develop successive tree models without fresh data input. Data leakage 

avoidance becomes possible through this approach because it integrates available information through an 

innovative phased procedure. This algorithm uses symmetric trees to produce identical splitting operations 

which improve the speedy training process and avoids traditional regression algorithms that need entire data 

sets to train trees for target value prediction [50]. 

 

9. MODEL EVALUATION 

There are several metrics used to evaluate the proposed model, depending on the problem. Some are 

appropriate for classification problems, while others are appropriate for regression. Here, we used metrics 

commonly used to predict refactoring: accuracy, recall, precision, and F1-score. Results were evaluated for the 

dataset used at the method level. 

 

10. DISCUSSION AND RESULTS 

The proposed approach was evaluated using four datasets. The proposed model classifiers were 

implemented using Python. The Lion's Optimization algorithm was used for feature selection and applied to 

the four datasets. Table 2 and Table 3 the prediction performance results for the dataset are summarized using 

evaluation metrics: accuracy, positive precision, F-measures, and recall. 

In this research, the efficiency of applying Lion's Optimization algorithm with stacking and boosting 

classifier is tested in terms of the performance efficiency of predicting optimal restructuring opportunities at 

the method level. 

In this research, the prediction efficiency is estimated through evaluation metrics. Table (2) presents the 

results of the stacking and boosting classifier on the four datasets. The stacking and boosting classifier achieved 

an accuracy of 0.99 on the DTS3 dataset, achieving the highest prediction accuracy. However, there were 

discrepancies between the recall, positive precision, and F1 metrics, and the results were unbalanced for some 

stacking and boosting methods.  
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Table 2. Results of the proposed model for the four data sets 
DataSet Model Algorithm Accuracy Precision F1-Score 

DTS1 

Stack 

SVC 0.97 0.60 0.24 

RBF 0.97 0.60 0.24 

LR 0.96 0.25 0.08 

XGBoost 0.98 0.85 0.70 

Stack 0.98 0.81 0.72 

Boosting 

GB 0.98 0.80 0.80 

CatBoost 0.98 0.93 0.80 

LightGBM 0.98 0.92 0.72 

AdapBoost 0.97 0.50 0.16 

DTS2 

Stack 

SVC 0.98 0.91 0.65 

RBF 0.97 0.72 0.68 

LR 0.95 1.00 0.09 

XGBoost 0.98 0.79 0.86 

Stack 0.98 0.88 0.80 

Boosting 

GB 0.97 0.62 0.76 

CatBoost 0.98 0.71 0.83 

LightGBM 0.97 1.00 0.33 

AdapBoost 0.95 1.00 0.09 

DTS3 

Stack 

SVC 0.99 1.00 0.85 

RBF 0.99 0.80 0.88 

LR 0.98 0.71 0.73 

XGBoost 0.99 0.95 0.97 

Stack 0.99 0.95 0.97 

Boosting 

 

GB 0.99 0.94 0.86 

CatBoost 0.99 1.00 0.85 

LightGBM 0.99 0.95 0.97 

AdapBoost 0.99 0.90 0.95 

DTS4 

Stack 

SVC 0.99 0.86 0.90 

RBF 0.99 0.83 0.90 

LR 0.98 0.88 0.81 

XGBoost 0.99 0.86 0.93 

Stack 0.99 1.00 0.97 

Boosting 

GB 0.99 1.00 0.88 

CatBoost 0.97 1.00 0.46 

LightGBM 0.98 1.00 0.82 

AdapBoost 0.98 1.00 0.70 

 

Table 3 shows that the highest accuracy was achieved, with the stacking and boosting classifier with the 

LOA algorithm reaching 1.00. Furthermore, there were improvements in the evaluation metrics for the stacking 

and boosting classification methods, with the positive precision metric achieving 1.00 for the DTS1-AdapBoost 

model and the DTS2-LR model, while the stacking and boosting classifier achieved 1.00 on the DTS4 and 

DTS3 datasets.While the recall measure achieved 0.90 for the XGBoost model and boosting classifier on DTS1, 

0.95 for the XGBoost model and boosting classifier on DTS2, and 1.00 for the stacking and boosting classifier 

on DTS4 and DTS3 datasets. While the F1 criterion achieved the highest ratio of 0.90 for the XGBoost model 

and 0.94 for the AdapBoost model for the DTS1 dataset, it achieved 0.93 for the SVC model and 0.90 for the 

CatBoost+XGBoost model for the DTS2 dataset, and the highest ratio was 1.00 for the stacking classifier and 

boosting classifier for the DTS4 and DTS3 datasets. The results show that combining the stacking classifier 

and boosting classifier with the LOA optimization algorithm improved prediction and achieved the highest 

ratio of 1.00 for the DTS4 and DTS3 datasets. 

The best prediction results emerged from DTS3 and DTS4 datasets because the model scored 100% 

accuracy and F1 score. The model exactly forecasted all actual refactoring requirements leading to high 

generalizability levels when the datasets maintain perfect balance and representativeness. 

Nevertheless, the DTS1 and DTS2 data results generated noticeable mismatches between precision rates and 

recall measures. The AdaBoost model obtained 1.00 precision from DTS1 while achieving 0.90 recall while 

logistic regression exhibited matching behavior when evaluating DTS2. The differences between predicted and 

actual outcomes reveal that particular models function cautiously to decrease wrong positives yet face more 

wrong negatives. The identified pattern suggests that the methodology learned data distributions specifically 

from the dominating samples. Related studies based on feature selection methods including genetic algorithm 

(GA), whale algorithm (WA) and SVM algorithm which united GA and WA for performance enhancement 
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yielded maximum accuracy of 0.93. The proposed model outperformed baseline values by reaching 1.00 along 

with other metrics which exceeded previous results in some cases. This data enhancement becomes possible 

because of the combinational power between ensemble learning and the law of attraction. However, some 

limitations remain. The whale algorithm increases computational expenses particularly during its application 

to large datasets. 

 

Table 3. Results of the proposed model for the four data sets using the lion optimization algorithm. 
DataSet + LOA Model Algorithm Accuracy Precision Recall F1-Score 

DTS1 

Stack 

SVC 0.99 0.94 0.75 0.83 

RBF 0.97 0.58 0.35 0.43 

LR 0.96 0.25 0.05 0.08 

XGBoost 0.99 0.90 0.90 0.90 

Stack 0.99 0.93 0.75 0.83 

Boosting 

GB 0.99 0.94 0.90 0.92 

CatBoost 0.99 0.94 0.90 0.92 

LightGBM 0.99 0.94 0.90 0.92 

AdapBoost 0.99 1.00 0.90 0.94 

DTS2 

Stack 

SVC 0.99 0.90 0.95 0.93 

RBF 0.98 0.75 0.90 0.81 

LR 0.95 1.00 0.05 0.09 

XGBoost 0.98 0.79 0.95 0.86 

Stack 0.99 0.95 0.90 0.92 

Boosting 

GB 0.98 0.82 0.95 0.88 

CatBoost 0.99 0.86 0.95 0.90 

LightGBM 0.98 0.82 0.95 0.88 

AdapBoost 0.99 0.86 0.95 0.90 

DTS3 

Stack 

SVC 1.00 0.95 1.00 0.98 

RBF 0.99 0.83 1.00 0.90 

LR 0.98 0.75 0.75 0.75 

XGBoost 1.00 1.00 1.00 1.00 

Stack 1.00 1.00 1.00 1.00 

Boosting 

 

GB 1.00 1.00 1.00 1.00 

CatBoost 1.00 1.00 1.00 1.00 

LightGBM 1.00 1.00 1.00 1.00 

AdapBoost 1.00 1.00 1.00 1.00 

DTS4 

Stack 

SVC 1.00 1.00 1.00 1.00 

RBF 0.98 0.93 0.70 0.80 

LR 0.98 0.93 0.75 0.83 

XGBoost 1.00 1.00 1.00 1.00 

Stack 1.00 1.00 1.00 1.00 

Boosting 

GB 1.00 1.00 1.00 1.00 

CatBoost 1.00 1.00 1.00 1.00 

LightGBM 0.99 0.95 1.00 0.97 

AdapBoost 1.00 1.00 1.00 1.00 

 

11. CONCLUSION 

A combination of stacking and boosting approaches and Lion Optimization Algorithm selection methods 

forms a research design to enhance software prediction of refactoring. The model demonstrated 100% accuracy 

and F1-score in particular data tests (DTS3 and DTS4) through evaluations on four open-source Java 

projects.The research results demonstrated that the Meta learning model combined with intelligent feature 

selection will enhance the accuracy of restructuring prediction and reduce development time by aligning meta-

learning with swarm intelligence within a flexible processing framework that enhances theoretical 

understanding.The widespread adoption of this system faces obstacles due to computational expenses as well 

as subpar result quality in datasets that have diverse distribution or contain ambiguous data.Future research 

will resolve these complexities and dilemmas by implementing transfer learning and graphical neural networks 

(GNNs) as next-generation methods to enhance generalization and better understand code structure.By 

evaluating this research the essential components of intelligent refactoring tools are determined which makes 

it possible to develop automated software maintenance procedures. 
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