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Abstract. One of the crucial issue in the mathematical reasoning is that many students do not really understand the 
mathematical rules underlying the conditional statement 𝑝 → 	𝑞, whereas most of mathematical theorems are of this pattern. 
They believe that the falsity of 𝑝 implies the falsity of 𝑞. This is tantamount to presuming that implication is equivalent to 
the inverse, but that's not the case. This fact suggests that students have not been able in distinguishing the sufficient and 
the necessary conditions of a conditional statement. This article is concerned with this problem by investigating the 
sufficient conditions on the basic quadrature formulas of integral approximation and their implication to the convergence 
order attainable. In order to instill students' critical thinking skills, theorems relating to the convergence orders of three basic 
methods are proven. Furthermore, the cases where the sufficient conditions are fulfilled as well as cases where they are not 
satisfied are examined by a series of numerical simulation. It is concluded that the quadrature formula with a high 
convergence order does not provide the better results than the lower order of convergence if the sufficient conditions are 
not met properly. 
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INTRODUCTION 

Once I asked students in my class to imagine a shop displayed an advertisement "if your purchase is more than 
IDR 100,000,- then you will get a 10% discount". What can be concluded if a customer's purchase is IDR 99,000,-? 
All students answered:  “the customer will not get any discount”.  This is of course a premature conclusion.  The ability 
to discern between the necessary and sufficient conditions of mathematical statements is a hardship for many college 
students when learning mathematics. For instance, students typically believed that the zeros of the first derivative of a 
function was a sufficient condition for an optimum, but in fact it is a necessary condition. When they are asked to 
determine the maximum or minimum of  𝑓(𝑥) = 𝑥! or 𝑓(𝑥) = |𝑥|, they typically employ the standard procedure for 
specifying derivative zeros, which is absolutely fail. This fact is at least based on the author’s classroom experience 
when teaching at undergraduate level.  

Mathematics involves various types of statements such as axioms, postulates, definitions, undefined terms, lemmas, 
theorems, corollaries and conjectures. A proposition is a statements which has a definite truth value, either true or 
false. A theorem in mathematics is a kind of proposition in which the truth can be proven by the rule of logic. The 
formulas in mathematics are actually a part of the theorem. The mathematical statements are generally in the form of 
compound sentences involving connectivities such as negation (¬), disjunction (∨), exclusive disjunction (⊕), 
conjunction (∧), implication (→), and bi-implication (↔). The implication notation 𝑝 → 𝑞 is read "if 𝑝 then 𝑞'' or  "𝑝 
implies 𝑞" or "𝑝 is a sufficient condition for 𝑞''. The implication 𝑝 → 𝑞	is also sometimes called the conditional 
statement where 𝑝 is the antecedent and 𝑞 is the conclusion. Some simple and interesting illustrations of the sufficient 
and necessary conditions has been exposed in [11, 13, 22]. As mentioned in [6]  that almost all theorems in mathematics 
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can be represented in the conditional sentences. For examples, "if a triangle has two sides congruent then it also has 
two opposite angles that are congruent'', as well as "if 𝑥 dan 𝑦 positive with 𝑥 ≠ 𝑦 then "

#
+ #

"
> 2.  

Tabel 1  shows four possibilities of implication 𝑝 → 𝑞 and its variants. Let  𝜏(𝑝) stands for the truth value of 
proposition 𝑝, then the only case 𝜏(𝑝 → 	𝑞) = 𝐹 only if 𝜏(𝑝) = 𝑇 and  𝜏(𝑞) = 𝐹, other cases are true. From this  fact, 
it can be understood that 𝑝 → 𝑞 ≡ ¬	𝑝 ∨ 𝑞. The logic consideration of the implications truth value the reason fits to 
human cognition has been examined in [11, 12, 16]. Three modifications of a conditional sentence (𝑝 → 𝑞) are converse 
(𝑞 → 𝑝), inverse (¬𝑝 → ¬𝑞), and contrapositive (¬𝑞 → ¬𝑝). It can be verified that  𝑝 → 𝑞 ≡ ¬𝑞 → ¬𝑝 and they are 
called equivalent. The similar fact also holds for inverse and converse. 

 
Tabel 1. Truth value of implication, converse, inverse, and contrapositive 

 
 

Rows 
 implication converse inverse contrapositive 
𝑝 𝑞 ¬𝑝 ¬𝑞 𝑝 → 𝑞 𝑞 → 𝑝 ¬𝑝 → ¬𝑞 ¬𝑞 → ¬𝑝 

1 T T F F T T T T 
2 T F F T F T T F 
3 F T T F T F F T 
4 F F T T T T T T 
 
The sufficient condition  or premise of an implication might be a compound statement with some connectivities. 

For example, the sufficient condition of statement "if 𝑥 and 𝑦 positive with 𝑥 ≠ 𝑦 then "
#
+ #

"
> 2$ composed of two 

sentences, i.e. "𝑝$:	𝑥 and 𝑦 are positive", and 𝑝%:	𝑥 ≠ 𝑦. They are related by the connectivity ∧. Symbolically, it can 
be represented as 𝑝$ ∧ 𝑝% → 𝑞.  Both propositions must be true in order to get the conclusion "

#
+ #

"
> 2 true. For 

example, 𝑥 = 2 and 𝑦 = 3 satisfy both conditions and we find %
!
+ !

%
= $!

&
> 2  is a true statement. In case one of them 

is not fulfilled then the conclusion could be false. For example, 𝑥 = 𝑦 = 2 satisfies the first but not for the second. In 
this case we find  "

#
+ #

"
= %

%
+ %

%
= 2 > 2 is a false statement. Otherwise, for 𝑥 = −2 and 𝑦 = −3 then the sufficient 

condition is not satisfied but  "
#
+ #

"
= '%

'!
+ '!

'%
= $!

&
> 2	is true statement. This means that a non-fulfillment of 

sufficient conditions does not imply the falsity of the conclusion. In a true implication, the true of conclusion does not 
necessarily the result of a true premise, while the true of premise must lead to a true of conclusion. 

The critical problem on the conditional sentence is when the sufficient condition or antecedent cannot be verified. 
As reported by Krantz [16] that one of Aristotle’s rules of logic was that every sensible statement, that is clear and 
succinct and does not contain logical contradictions, is either true or false. There is no “middle ground” or “undecided 
status” for such a statement. Thus the assertion "if there is life as we know it on Mars, then fish can fly" is either true 
or false. We do know that fish cannot fly, but we cannot determine the truth or falsity of this statement because we do 
not know whether there is life as we know it on Mars. 

Many cases in applied mathematics employed a heuristic approach where the conclusion was not based on the 
fulfillment of sufficient conditions, but only rely on the data or numerical simulations. The conclusions obtained 
through this approach tend to be weak and not universally true. Regretfully, a lot of people have mistakenly believed 
that mathematics is just a set of formulas for dealing with and calculating numbers without taking into account the 
necessary conditions. This reality cannot be avoided as it becomes easier to solve mathematical problems without 
having to study mathematics in depth, such as through various machine learning packages that are easily and 
inexpensively available, even for free. 

In the other hand, modifying the sufficient condition of theorem to make it easier to examine is a concern in 
mathematics research. As computing technology advances, many students lose interest in studying theorems and 
proofs, as well as checking for sufficiency conditions. This might be the corner stone for the development of a new 
branch of mathematical logic known as reverse mathematics. Reverse mathematics is a program in mathematical logic 
that seeks to give precise answers to the question of which axioms are necessary in order to prove theorems of "ordinary 
mathematics", e.g. see [4, 19]. One question should be also considered in the reverse mathematics is how likely it is 
that the theorem's conclusion will be optimally unreachable if sufficient  conditions are not met perfectly. This question 
might also relates to the philosophy of mathematics. 

According to Ruben Hers in [14], philosophy of mathematics should be examined against five kinds  of 
mathematical practice: research, application, teaching, history, and computing. Computers  are increasingly being used 
in mathematical studies, not just in applied mathematics, but also in pure mathematical research, such as making 
conjectures. Proof is sometimes completed using a computer when it requires calculations that cannot be done by hand; 
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for example, "the four-color  conjecture". Ruben Hers in his book entitled "What is Mathematics Really" noticed an 
ironic that for decades philosopher said the valid mathematical proofs should be checkable by machine, i.e.  computer, 
but on the other hand when part of a proof is done on a machine, some say, "That’s not a proof" [14].  

Some well-known theorems are frequently proven in the classroom while learning mathematics. As mentioned in 
[12, 16] and many others, there are numerous advantages to learning mathematics through proving theorems, such as 
to establish a fact with certainty, to gain understanding, to communicate an idea to others, for challenge, to create 
something beautiful, to construct a large mathematical theory. Nevertheless there are some drawbacks to this learning 
approach because it is thought to be more complicated than using mathematics tools that already installed on computer, 
such as various Python libraries.  A personal experience when teaching theorems in the vector calculus course with 
precedence some numerical and graphical simulation by GeoGebra, students become more interested in understanding 
the proof of theorems in depth. The acquisition of mathematics through a computational thinking approach is highly 
advantageous for adapting to the current state of AI advancements, see [3]. This approach is characterized by the use 
of numerical simulations to clarify mathematical concepts. This article is presented in light of these considerations.   

For numerical simulation purposes, this paper employs a classic and simple topics on numerical analysis course, in 
particular the error analysis of quadrature formulas for integral approximation. For simplicity, the quadrature formula 
of equidistant is taken for simulation. This simplest kind of this quadrature formula had been discussed in many 
classical books of numerical method and it's  necessary and sufficient conditions of the equidistant was introduced 
[25]. Despite its simplicity, the concept of the quadrature formula serves as the basis for the creation of numerical 
integral schemes and has been extended to more complicated integral, for instance, Riemann-Liouville fractional 
integral [9], fractional integral in Hilbert space [10], curvilinear integral of first kind [24], and Gauss quadrature 
formula [21]. So far, textbooks widely used for teaching this problem have focused solely on cases where sufficient 
conditions are met without paying attention on cases where sufficient conditions are not fulfilled, e.g. [2, 5, 17]. 

The paper begins by restating the idea of basic quadrature formulas and rewriting the midpoint, trapezoidal, and 
Simpsons' quadrature formulas. Furthermore, various supporting theorems from elementary real analysis are presented 
to prove various theorems regarding error estimation of integral approximation with the quadrature formula.  The 
theorems and proofs presented here are already well-known; yet some reviews are included to highlight some key 
points. Finally, some numerical simulations are demonstrated to justify the conclusion of theorem in which the 
sufficient condition is fulfilled as well as not fulfilled.   
 

MATERIALS AND METHODS 

There is no spesific material used in this research except a personal computer/laptop and the software MATLAB 
version 2020a running on MacBook Air  Intel Core i5 4GB of RAM with 128GB storage for conducting some 
numerical simulation. In meanwhile, the method is quite similar to literature review research in mathematics; it consists 
of definitions and supporting theorems. 

  

Preliminaries on Integral Approximation 

A various definitions of integral are intended to provide theoretical justification for various problems that arise 
from mathematics and applied sciences. Theoretically, the integral is defined as a limit of infinite sum but in practice 
it must be implemented by a computer that works only to the finite sums. Such a restriction which might have inspired 
the quadrature formula, i.e. taking only values of integrand f on some finite number of points in [𝑎, 𝑏]. Let 𝑥(, 𝑖	 =
	0,1,···	, 𝑛 be 𝑛	 + 	1 points in [𝑎, 𝑏] and assume the integral ∫ 𝑓(𝑥)	𝑑𝑥)

*  is given by  

𝐼(𝑓) = I𝑓(𝑥)	𝑑𝑥
)

*

=J𝑤(𝑓(𝑥()
+

(,$

+ 𝑅+.																	(1) 

The points in {𝑥(: 𝑖 = 0, 1,⋯ , 𝑛} where 𝑓 evaluated are called the abscissas or nodes, the coefficients 
{𝑤( ∶ 	𝑖	 = 	0, 1,·	·	·	, 𝑛} are called the weights, and 𝑅+ is the reminder or error term. The definite integral (1) is 
approximated by the quadrature formula, i.e.  

 

𝐼(𝑓) ≈ I𝑓(𝑥)	𝑑𝑥
)

*

=J𝑤(𝑓(𝑥()
+

(,$

.																						(2) 
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The first issue is how to select the abscissa 𝑥(’𝑠 and determine the weight of 𝑤(’𝑠 so that 𝑄(𝑓) in (2) is a good 
approximation for 𝐼(𝑓) in (1). The second problem is how to obtain the upper bound of the remainder term 𝑅+ that 
specifies the approximation accuracy.  

The idea for approximating the integral  ∫ 𝑓(𝑥)	𝑑𝑥)
*  is to construct an interpolation polynomial 𝑃+ for 𝑓, then  

∫ 𝑃+(𝑥)	𝑑𝑥
)
*  is taken as approximation for  ∫ 𝑓(𝑥)	𝑑𝑥)

* . This idea is based on the fact that calculating the integral of a 
polynomial is much easier than calculating the integral of any function in general. Let 𝑥-, 𝑥$,···, 𝑥+ be distinct nodes in 
[𝑎, 𝑏] and f be a continuous function on [𝑎, 𝑏], then there is a unique interpolation polynomial 𝑃+ of degree less than 
or equal to 𝑛, i.e. 𝑃+(𝑥() = 	𝑓(𝑥(), 𝑖	 = 	0, 1,·	·	·	, 𝑛 and the such interpolation polynomial can be constructed by either 
Lagrange or divided-difference method [5, 17]. The basic quadrature formulas are according to 𝑛	 = 	0, 1, 2.  

• 𝑛 = 0 and the node 𝑥- =
*.)
%

 results the midpoint formula 𝐼(𝑓) ≈ 𝑀(𝑓) = (𝑏 − 𝑎)𝑓 X*.)
%
Y where the 

appopriate weight is 𝑤- = 𝑏 − 𝑎. 
• 𝑛 = 1 and two nodes 𝑥- = 𝑎 and 𝑥$ = 𝑏 provides the trapezoidal formula 𝐼(𝑓) = 𝑇(𝑓) =

$
%
(𝑏 − 𝑎)Z𝑓(𝑎) + 𝑓(𝑏)[ with corresponding weights are 𝑤- = 𝑤$ =

)'*
%

. 

• 𝑛 = 2 and three nodes 𝑥- = 𝑎, 𝑥$ =
*.)
%

, and 𝑥% = 𝑏 gives the Simpson formula 𝐼(𝑓) ≈ 𝑆(𝑓) =
)'*
&
]𝑓(𝑎) + 4𝑓 X*.)

%
Y + 𝑓(𝑏)_ where the weights in this case are 𝑤- =

)'$
&

, 𝑏$ =
%
!
(𝑏 − 𝑎), 𝑤% =

)'*
&

. 
In order to improve the accuracy,  the interval [𝑎, 𝑏] is partitioned smaller into 𝑥- ≔ 𝑎 < 𝑥$ < 𝑥% < ⋯ < 𝑥+ ≔ 𝑏, 
then the basic quadrature formulas defined on each subinterval. For simplification, the partition is taken to be uniform, 
i.e. 𝑥/ − 𝑥/'$ ≔ ℎ so that 𝑥/ = 𝑥/'$ + ℎ for 𝑘 = 1,2,⋯ , 𝑛. Using the additive property of integral, the following 
composite quadrature formulas are obtained. 

• Midpoint formula: Consider that each three consecutive nodes 𝑥/'$, 𝑥/ , 𝑥/.$, 𝑘 = 1, 3,⋯ , 𝑛 − 1 generates 
one midpoint formula, i.e. 𝑀/(𝑓) = (𝑥/.$ − 𝑥/'$)𝑓(𝑥/) = 2ℎ𝑓(𝑥/). By summing up these terms the 
composite midpoint formula is obtained as follows: 

𝑀+(𝑓) = J 𝑀/(𝑓)
+'$

/,$,/	233

= 2ℎJ𝑓(𝑎 + (2𝑘 − 1)ℎ)

+
%

/,$

. 

• Simpson formula: Consider that each three consecutive nodes 𝑥/'$, 𝑥/ , 𝑥/.$, 𝑘 = 1, 3,⋯ , 𝑛 − 1 generates 
one Simpson formula, i.e. 𝑆/(𝑓) =

4
!
Z𝑓(𝑥/'$) + 4𝑓(𝑥/) + 𝑓(𝑥/.$)[. By summing up these terms the 

composite Simpson formula is obtained as follows: 

𝑆+(𝑓) =
ℎ
3d𝑓

(𝑎) + 𝑓(𝑏) + 4J𝑓(𝑥%/'$

+
%

/,$

+ 2J𝑓(𝑥%/)

+
%'$

/,$

e. 

• Trapezoidal formula: Consider that each two consecutive nodes 𝑥/'$, 𝑥/, 𝑘 = 1, 2,⋯ , 𝑛 generates one 
Trapezoidal formula, i.e. 𝑇/(𝑓) =

$
%
(𝑥/ − 𝑥/'$)Z𝑓(𝑥/'$) + 𝑓(𝑥/)[. By summing up these terms the 

composite trapezoidal formula is obtained as follows: 

𝑇+(𝑓) = J𝑇/(𝑓)
+

/,$

=
ℎ
2f𝑓

(𝑎) + 𝑓(𝑏) + 2J𝑓(𝑥/)
+'$

/,$

g. 

Recall that 𝑛 must be even for midpoint and Simpson while trapezoidal could be odd. Some detail derivation of 
basic quadrature formulas, technique to calculate the approximation of integral, and derivation of the error estimation 
can be found on the elementary numerical method textbooks, e.g. [5, 8, 17, 23]. In addition to the quadrature formula, 
the error term 𝑅+ as a function of ℎ will be formulated in order to evaluate the quality of approximation. Once this 
error term is known, the estimated error and the order of convergence of the approximation can be determined. 
Significancy of these two terms will be simulated by numerical simulations. Through numerical simulations the effect 
of sufficient condition on the order convergence will be examined. 

Supporting Theorems 

In the real analysis course, the Darboux Intermediate Value Theorem (D-IVT) states that a continuous function on 
interval [𝑎, 𝑏] always has pre-image for each 𝛼 ∈ ℝ	 lying between 𝑓(𝑎) and 𝑓(𝑏). Two versions of D-IVT are formally 
presented as follows. 
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Theorema 1 [D-IVT Standard] Let 𝑓: [𝑎, 𝑏] → ℝ be a continuous function and 𝛼 a real number between 𝑓(𝑎) and 
𝑓(𝑏), then there always 𝑐 ∈ (𝑎, 𝑏) such that 𝑓(𝑐) = 𝛼. 
 
The proof requires the Bolzano intermediate value theorem which is also knows as the root location theorem (RLT), 
i.e. if  𝑓: [𝑎, 𝑏] → ℝ be continuous and 𝑓(𝑎)𝑓(𝑏) < 0 then some 𝑐 ∈ (𝑎, 𝑏) exists so that 𝑓(𝑐) = 0, i.e. 𝑐 is the root of 
𝑓(𝑥) = 0. 
 
Proof. It is enough to assume that 𝑓(𝑎) ≠ 	𝑓(𝑏), since if  𝑓(𝑎) = 𝑓(𝑏) then it must be satisfied that 𝛼 = 𝑓(𝑎) = 𝑓(𝑏) 
so that it can be taken 𝑐 = 𝑎 or 𝑐 = 𝑏. Without lost of generality, we assume 𝑓(𝑎) < 𝑓(𝑏), there is  𝛼  in between, i.e. 
𝑓(𝑎) < 𝛼 < 𝑓(𝑏). Take ℎ(𝑥) ≔ 𝑓(𝑥) − 𝛼, then we find ℎ is continuous where ℎ(𝑎) = 𝑓(𝑎) − 𝛼 < 0 and ℎ(𝑏) =
𝑓(𝑏) − 𝛼 > 0. It can be verified easily that ℎ(𝑎)ℎ(𝑏) < 0. According to RLT, it can be concluded there exists 𝑐 ∈
(𝑎, 𝑏) such that ℎ(𝑐) = 0, i.e. ℎ(𝑐) = 𝑓(𝑐) − 𝛼 = 0 or 𝑓(𝑐) = 𝛼. ∎ 
 

Furthermore, the D-IVT is extended by allowing several numbers 𝛼$, 𝛼%, ⋯ , 𝛼+ located between 𝑓(𝑎) and 𝑓(𝑏). 
Observe the convex linear combination ∑ 𝜆(𝛼(+

(,$  where 0 < 𝜆( < 1 and ∑ 𝜆(+
(,$ = 1. Hence, 𝑓(𝑎) < 𝛼( < 𝑓(𝑏) and 

𝜆( > 0 implying 𝜆(𝑓(𝑎) < 𝜆(𝛼( < 𝜆(𝑓(𝑏). Summing up all these terms 𝑓(𝑎)∑ 𝜆(+
(,$ < ∑ 𝜆(𝛼(+

(,$ < 𝑓(𝑏)∑ 𝜆(+
(,$ . 

Since it is known that ∑ 𝜆(+
(,$ = 1 then one obtains 𝑓(𝑎) < ∑ 𝜆(𝛼(+

(,$ < 𝑓(𝑏). Formally, the extended version of D-
IVT is described as follows.   
 
Theorem 2 [D-IVT Extended] Let  𝑓: [𝑎, 𝑏] → ℝ be a continuous function on [𝑎, 𝑏] and 𝛼$, 𝛼%, ⋯ , 𝛼+	 are real numbers 
between 𝑓(𝑎) and 𝑓(𝑏). If 0 < 𝜆( 	< 1 where ∑ 𝜆( = 1+

(,$  then there exists 𝑐 ∈ (𝑎, 𝑏) such that 𝑓(𝑐) = ∑ 𝜆(𝛼(+
(,$ .  

 
Theorem 1 is a special case of Theorem 2 in which 𝛼$ = 𝛼% = ⋯ = 𝛼+ ≔ 𝛼 and 𝜆( ≔

$
+
, 𝑖 = 1,2,⋯ , 𝑛. This is the 

reason why Theorem 2 is regardes as the extended version of Theorem 1.  
In the differential calculus, it's well-known the Mean Value Theorem (MVT) that asserts the existence a point 𝑐 ∈

(𝑎, 𝑏) where the curve tangent 𝑦 = 𝑓(𝑥) at 𝑥 = 𝑐 is parallel to secant line connecting point Z𝑎, 𝑓(𝑎)[ and Z𝑏, 𝑓(𝑏)[, 
written by 𝑓5(𝑐) = 6())'6(*)

)'*
. In the integral calculus the similar theorem is known as the the integral mean value 

theorem (I-MVT).  
 

Theorem 3 [I-MVT Standard] If 𝑓: [𝑎, 𝑏] → ℝ continuous on [𝑎, 𝑏] then there exists 𝑐 ∈ (𝑎, 𝑏) such that ∫ 𝑓(𝑥)	𝑑𝑥)
* =

𝑓(𝑐)(𝑏 − 𝑎). 
 
Proof. Since 𝑓 continuous on [𝑎, 𝑏], it reaches maximum and minimum on [𝑎, 𝑏]. Let 𝑚 = min

"∈[*,)]
𝑓(𝑥) and 𝑀 =

max
"∈[*,)]

𝑓(𝑥), the inequality holds: 𝑚 ≤ 𝑓(𝑥) ≤ 𝑀 for each 𝑥 ∈ [𝑎, 𝑏]. Integrating both sides we obtain 𝑚(𝑏 − 𝑎) ≤

∫ 𝑓(𝑥)	𝑑𝑥)
* ≤ 𝑀(𝑏 − 𝑎) or 𝑚 ≤ ∫ 6(")	="!

"
)'*

≤ 𝑀. According to Theorem 1, there exists 𝑐 ∈ (𝑎5, 𝑏5) ⊆ (𝑎, 𝑏) such that 

𝑓(𝑐) = 𝛼 = ∫ 6(")	="!
"
)'*

, i.e. ∫ 𝑓(𝑥)	𝑑𝑥)
* = 𝑓(𝑐)(𝑏 − 𝑎).  ∎ 

 
Mean of function versus arithmetic mean. The quantity 𝑓(𝑐) = $

)'* ∫ 𝑓(𝑥)	𝑑𝑥)
*  is considered as the mean of function 

𝑓 on [𝑎, 𝑏]. Suppose that the continuous condition is relaxed just to be integrable and [𝑎, 𝑏] = [0, 𝑛]. Set a partition 
𝑎 ≔ 0 < 1 < 2 < ⋯ < 𝑛 =: 𝑏 and 𝑓 is piece-wise constant [0, 𝑛], i.e. 𝑓(𝑥) ≔ 𝑦( 	𝜒[('$,			()(𝑥) where 𝑦( ∈ ℝ, 𝑖 =
1,2,⋯ , 𝑛 then $

)'* ∫ 𝑓(𝑥)	𝑑𝑥)
* = $

+
∑ 𝑦(+
(,$ ≔ 𝑦x, which is exactly the ordinary (arithmetic) mean for discrete data 

𝑦$, 𝑦%, ⋯ , 𝑦+.  
 

Error Estimation of Quadrature Formulas  

As mentioned earlier that the quadrature formula is determined through polynomial interpolation defined on 
domain [𝑎, 𝑏]. The basic quadrature formulas are obtained when the interpolation applied on whole domain. Composite 
quadrature formulas are obtained by partitioning the domain into a number subdomains. The composite quadrature 
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formulas depend on parameter ℎ indicating the partition mesh or  natural number 𝑛 representing the number of 
subintervals. The following three theorems deal with the error estimate of the basic quadrature formulas. 

 
Theorem 4. If 𝑓 ∈ 𝒞%[𝑎, 𝑏], i.e. continuously differentiable up to second order, then there exists 𝜉 ∈ (𝑎, 𝑏) such that 
the midpoint formula gives the following error. 

𝐼(𝑓) −𝑀(𝑓) = 	
𝑓55(𝜉)
24

(𝑏 − 𝑎)!.													(3) 

Proof. Apply the Taylor theorem around 𝑥- =
*.)
%

 then for each 𝑥 ∈ [𝑎, 𝑏] there is a 𝜉" ∈ (𝑎, 𝑏) such that 𝑓(𝑥) −

𝑓(𝑥-) = 𝑓5(𝑥-)(𝑥 − 𝑥-) +
6##(>$)

%
(𝑥 − 𝑥-)%. Consider that ∫ 𝑓(𝑥-)	𝑑𝑥

)
* = (𝑏 − 𝑎)𝑓 X*.)

%
Y = 𝑀(𝑓) and 	∫ (𝑥 −)

*
𝑥-)	𝑑𝑥	 = 0, the following derivation is obtained, 

𝐼(𝑓) −𝑀(𝑓) = 	IZ𝑓(𝑥) − 𝑓(𝑥-)[	𝑑𝑥
)

*

	

= 	I𝑓5(𝑥-)(𝑥 − 𝑥-)	𝑑𝑥
)

*

+I
𝑓55(𝜉")
2

(𝑥 − 𝑥-)%
)

*

	𝑑𝑥	

= 	
𝑓55(𝜉)
6 |]

𝑏 − 𝑎
2 _

!

− ]
𝑎 − 𝑏
2 _

!

} =
𝑓55(𝜉)
24

(𝑏 − 𝑎)!. 

The proof is actually finish. The supplementary explanation that zero on the first term is because of ∫ (𝑥 − 𝑥-)
)
* 	𝑑𝑥 =

0 and the second term is a consequnce of Theorem 2 by taking 𝑔(𝑥) ≔ (𝑥 − 𝑥-)% ≥ 0 and 𝑓$(𝑥) ≔
6##(>$)

%
. Thus, 

∫ 6##(>$)
%

)
* (𝑥 − 𝑥-)%	𝑑𝑥 = 	

6##(>)
% ∫ (𝑥 − 𝑥-)%	𝑑𝑥

)
*  for some 𝜉 ∈ (𝑎, 𝑏). This explanation is crucial for students who 

might be confusing to the change from existence of 𝜉" depending on 𝑥 becomes 𝜉	a constant independent of 𝑥.                ∎ 
 
Before deriving the error estimate trapezoidal and Simpson formula, the following polynomial interpolation theorem 
is required, see Kress [17] for detail. 
 
Theorem 5. Suppose that 𝑓: [𝑎, 𝑏] → ℝ has continuous derivatives up to order 𝑛 + 1. If 𝑃+ is the interpolation 
polynomial of function 𝑓 at nodes 𝑥-, 𝑥$, ⋯ , 𝑥+ in [𝑎, 𝑏] then the following estimate holds, 

𝑓(𝑥) − 𝑃+(𝑥) =
𝑓(+.$)(𝜉)
(𝑛 + 1)!

(𝑥 − 𝑥-)(𝑥 − 𝑥$)⋯ (𝑥 − 𝑥+),														(4) 

where 𝜉 some point in (𝑎, 𝑏) depends on 𝑥. 
 
Theorem 6. If 𝑓 ∈ 𝒞%[𝑎, 𝑏] then there exists 𝜉 ∈ (𝑎, 𝑏) so that the trapezoidal formula holds the following estimate. 

𝐼(𝑓) − 𝑇(𝑓) = 	
𝑓55(𝜉)
12

(𝑏 − 𝑎)!.													(5) 
 
Proof. Let 𝑃$ ≔ 𝐿$𝑓 be the first order polynomial interpolation of 𝑓 with nodes 𝑥- = 𝑎 dan 𝑥$ = 𝑏. A fairly complete 
discussion about polynomial interpolation can refer to various numerical methods textbooks, for example see [5, 13a]. 
It can be understood the error 𝐸$(𝑓) ≔ ∫ Z𝑓(𝑥) − 𝐿$𝑓(𝑥)[	𝑑𝑥 = 𝐼(𝑓) − 𝑇(𝑓))

* . Using (4) for 𝑛 = 1, we find for each 

𝑥 ∈ [𝑎, 𝑏] there exists 𝜉" ∈ (𝑎, 𝑏) such that the following holds: 𝑅$(𝑥) = 𝑓(𝑥) − 𝐿$𝑓(𝑥) =
6##(>$)

%
(𝑥 − 𝑎)(𝑥 − 𝑏). 

Furthermore, consider 

𝐼(𝑓) − 𝑇(𝑓) = I 𝑅$(𝑥)	𝑑𝑥
)

*
= I

𝑓55(𝜉")
2

(𝑥 − 𝑎)(𝑥 − 𝑏)	𝑑𝑥.
)

*
 

Apply the I-MVT extended for 𝑔(𝑥) ≔ (𝑥 − 𝑎)(𝑥 − 𝑏) ≤ 0 and 𝑓(𝑥) ← 𝑓$(𝑥) ≔
6##(>$)

%
, there exists 𝜉 ∈ (𝑎, 𝑏) so 

that  

I
𝑓55(𝜉")
2

(𝑥 − 𝑎)(𝑥 − 𝑏)	𝑑𝑥 =
𝑓55(𝜉)
2 I (𝑥 − 𝑎)(𝑥 − 𝑏)

)

*
	𝑑𝑥 = −

𝑓55(𝜉)
12

(𝑏 − 𝑎)!.
)

*
 

The last step can be verified by elementary calculus.  ∎ 
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Theorem 7. Assuming that 𝑓 ∈ 𝒞?[𝑎, 𝑏] then there exists 𝜉 ∈ (𝑎, 𝑏)	so that the Simpson formula provide the following 
error estimate 

𝐼(𝑓) − 𝑆(𝑓) = 	−
𝑓(?)(𝜉)
2880

(𝑏 − 𝑎)!.													(6) 
Proof. Similar to the proof of Theorem 6, let 𝐿%𝑓 be the second order polynomial interpolation of 𝑓 with nodes 𝑥- =
𝑎	, 𝑥$ =

$
%
(𝑎 + 𝑏), and 𝑥% = 𝑏. We have the error 𝐸%(𝑓) ≔ ∫ [𝑓(𝑥) − 𝐿%𝑓(𝑥)]	𝑑𝑥 = 𝐼(𝑓) − 𝑆(𝑓))

* . Define the cubic 

polynomial 𝑝(𝑥) ≔ 𝐿%𝑓(𝑥) +
?

()'*)%
[(𝐿%𝑓)5(𝑥$) − 𝑓5(𝑥$)]	𝑞!(𝑥),	 where 𝑞!(𝑥) = (𝑥 − 𝑥-)(𝑥 − 𝑥$)(𝑥 − 𝑥%). 

Observe that for 𝑘 = 0, 1, 2 it satifies 𝑞!(𝑥/) = 0 so that 𝑝(𝑥/) = 𝐿%𝑓(𝑥/) + 0 = 𝑓(𝑥/); hence 𝑝 interpolated. The 
derivative of 𝑝 is obtained as 𝑝5(𝑥) = (𝐿%𝑓)5(𝑥) +

?
()'*)%

[(𝐿%𝑓)5(𝑥$) − 𝑓5(𝑥$)]𝑞!5 (𝑥). It easy to verify that 𝑞!5 (𝑥$) =
$
?
(𝑏 − 𝑎)%, thus 𝑝5(𝑥$) = 𝑓′(𝑥$). Pay attention 𝑞! is an odd function with respect 𝑥 = 𝑥$ so that ∫ 𝑞!(𝑥)	𝑑𝑥

)
* =

∫ (𝑥 − 𝑥-)(𝑥 − 𝑥$)(𝑥 − 𝑥%)𝑑𝑥 = 0)
* . Now, the error formula can be written as 𝐸%(𝑓) ≔ ∫ [𝑓(𝑥) − 𝑝(𝑥)]	𝑑𝑥)

* . Take 
𝑔(𝑥) ≔ (𝑥 − 𝑥-)(𝑥 − 𝑥$)%(𝑥 − 𝑥%) then it holds 𝑔(𝑥) ≤ 0 for all 𝑥 ∈ [𝑎, 𝑏]. Applying the L’Hospital rule, it can 
shown the following limit exists for each 𝑥/ = 𝑥-, 𝑥$, and 𝑥%. 

lim
"→"&

𝑓(𝑥) − 𝑝(𝑥)
(𝑥 − 𝑥-)(𝑥 − 𝑥$)%(𝑥 − 𝑥%)

. 

Suppose that limits corresponding to 𝑥/ = 𝑥-, 𝑥$, and 𝑥% are ℓ-, ℓ$, and ℓ% repectively. Define the function ℎ as 

ℎ(𝑥) ≔ �
𝑓(𝑥) − 𝑝(𝑥)

(𝑥 − 𝑥-)(𝑥 − 𝑥$)%(𝑥 − 𝑥%)
		𝑖𝑓	𝑥 ≠ 𝑥-, 𝑥$, 𝑥%,

			ℓ/														𝑖𝑓	𝑥 = 𝑥/ , 𝑘 = 0, 1, 2.																									
 

It easy to check that ℎ is continuous on [𝑎, 𝑏], in particular at 𝑥 = 𝑥/ , 𝑘 = 0, 1, 2. The error 𝐸% can be written as follows 

𝐸%(𝑓) = I (𝑥 − 𝑥-)(𝑥 − 𝑥$)%(𝑥 − 𝑥%) |
𝑓(𝑥) − 𝑝(𝑥)

(𝑥 − 𝑥-)(𝑥 − 𝑥$)%(𝑥 − 𝑥%)
} 	𝑑𝑥 = I 𝑔(𝑥)ℎ(𝑥)	𝑑𝑥.

)

*

)

*
 

Since  ℎ continuous and 𝑔 does not change the sign on [𝑎, 𝑏] then by Theorem 2, there exists 𝑧 ∈ [𝑎, 𝑏] such that 

𝐸%(𝑓) = |
𝑓(𝑧) − 𝑝(𝑧)

(𝑧 − 𝑥-)(𝑧 − 𝑥$)%(𝑧 − 𝑥%)
}I (𝑥 − 𝑥-)(𝑥 − 𝑥$)%(𝑥 − 𝑥%)	𝑑𝑥

)

*
.											(∗) 

Observe that 𝑝 is the third degree interpolation polynomial for 𝑓 involving 4 nodes, namely 𝑥-, 𝑥$, 𝑥$, and 𝑥%. 
According to (4) there exists 𝜉 ∈ (𝑎, 𝑏) such that 𝑓(𝑧) − 𝑝(𝑧) = 6(()(>)

?!
(𝑧 − 𝑥-)(𝑧 − 𝑥$)%(𝑧 − 𝑥%). It is straighforward  

to get 

I (𝑥 − 𝑥-)(𝑥 − 𝑥$)%(𝑥 − 𝑥%)	𝑑𝑥 = −
(𝑏 − 𝑎)B

120 .
)

*
 

Substituting the last result into the previous term (*), it is obtained that 

𝐸%(𝑓) = −
𝑓(?)(𝜉)
4!

(𝑏 − 𝑎)B

120 = −
𝑓(?)(𝜉)
2880

(𝑏 − 𝑎)B.												∎ 
It can be seen that this proof is not straightforward, but that is the challenge of studying mathematics. Learning 
mathematics is more than just memorizing formulas; you must also comprehend where they originate from. For further 
references regarding this discussion, see Kress [17].  

The error estimate of the composite quadrature formulas are derived by taking the uniform partition, i.e. ℎ:= )'*
+
	 

where 𝑛 is the number of nodes. Now, we are going to discuss the derivation of the error estimation formula of 
composite quadrature formulas. 

 
Theorem 8. Let 𝑓, 𝑓′, and 𝑓55 be continuos on [𝑎, 𝑏] and 𝑀+(𝑓) is the midpoint formula, i.e. 𝑀+(𝑓) =

2ℎ∑ 𝑓(𝑎 + (2𝑘 − 1)ℎ)
*
%
/,$ , then there exists 𝜉 ∈ (𝑎, 𝑏) such that  

𝐼(𝑓) −𝑀+(𝑓) =
(𝑏 − 𝑎)ℎ%

6 𝑓55(𝜉).															(7) 
 
Proof. Divide interval [𝑎, 𝑏] into subintervals �𝑥%(/'$), 𝑥%/�, 𝑘 = 1, 2,⋯ , +

%
 to form 

𝐼(𝑓) −𝑀+(𝑓) =J�I 𝑓(𝑥)	𝑑𝑥
"%&

"%(&+,)
−𝑀+

/(𝑓)� ,
+/%

/,$
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where 𝑀+
/(𝑓) = 2ℎ𝑓 X

"%(&+,)."%&
%

Y = 2ℎ𝑓(𝑥%/'$).	This is nothing but the midpoint formula on �𝑥%(/'$), 𝑥%/�. By using 
Theorem 4, for each 𝑘 = 1, 2,⋯ , 𝑛/2 the following holds. 
  

I 𝑓(𝑥)	𝑑𝑥
"%&

"%(&+,)
−𝑀+

/(𝑓) =
𝑓55(𝜉/)
24 Z𝑥%/ − 𝑥%(/'$)[

! =
𝑓55(𝜉/)
24

(2ℎ)! =
𝑓55(𝜉/)
6

2(𝑏 − 𝑎)
𝑛 ℎ%. 

Substitute this expression into summing for all 𝑘 as previous, the following are obtained. 

𝐼(𝑓) −𝑀+(𝑓) =
𝑏 − 𝑎
6 ℎ%J]

2
𝑛_	𝑓

55(𝜉/).
+/%

/,$

 

Observe the coefficients 𝑎/ =
%
+
, 𝑘 = 1, 2,⋯ , 𝑛/2, so that ∑ 𝑎/

+/%
$ = ∑ X%

+
Y = X+

%
Y X%

+
Y = 1+/%

$ . Since it is known that 

𝑓55 is continuous on [𝑎, 𝑏] then by Theorem 2 there exists 𝜉 ∈ (𝑎, 𝑏) such that ∑ X%
+
Y 𝑓55(𝜉) = 𝑓55(𝜉)+/%

$ . Substitute it 
into previous expression, the proof is complete. ∎ 
 
Theorem 9. Let 𝑓, 𝑓′, and 𝑓55 be continuos on [𝑎, 𝑏] and 𝑇+(𝑓) is the trapezoidal formula, i.e. 𝑇+(𝑓) =
4
%
(𝑓(𝑎) + 𝑓(𝑏) + 2∑ 𝑓(𝑥/)+'$

/,$ ), then there exists 𝜉 ∈ (𝑎, 𝑏) such that  

𝐼(𝑓) −𝑀+(𝑓) = −
(𝑏 − 𝑎)ℎ%

12 𝑓55(𝜉).															(8) 
Proof. The idea similar to prior proof, let [𝑥/'$, 𝑥/], 𝑘 = 1, 2,⋯ , 𝑛 be subintervals partitioned of [𝑎, 𝑏]. Using the 
additive property of integral on the partition, the following holds. 

𝐼(𝑓) − 𝑇+(𝑓) = 	J|I 𝑓(𝑥)	𝑑𝑥
"&

"&+,
− 𝑇+/(𝑓)} =J−

+

/,$

(𝑥/ − 𝑥/'$)!

12 𝑓55(𝜉/)
+

/,$

	

= −
ℎ%

12
(𝑏 − 𝑎)J

1
𝑛

+

/,$

𝑓55(𝜉/) = −
(𝑏 − 𝑎)ℎ%

12 𝑓55(𝜉). 

Theorem 2 has been applied on this derivation to term ∑ $
+

+
/,$ 𝑓55(𝜉/) by noting that ∑ $

+
+
/,$ = 1. ∎ 

 
Theorem 9. Let 𝑓, 𝑓′, 𝑓55, 𝑓(!), and 𝑓(?)  be continuos on [𝑎, 𝑏] and 𝑆+(𝑓) is the Simpson formula, i.e. 𝑆+(𝑓) =
4
!
XZ𝑓(𝑎) + 𝑓(𝑏) + 4∑ 𝑓(𝑥%/'$)

+/%
/,$ + 2∑ 𝑓(𝑥%/)

+/%'$
/,$ [Y, then there exists 𝜉 ∈ (𝑎, 𝑏) such that  

𝐼(𝑓) − 𝑆+(𝑓) = −
(𝑏 − 𝑎)ℎ?

180 𝑓(?)(𝜉).															(9) 

Proof. Recall that Simpson formula takes 𝑛 even and the domain [𝑎, 𝑏] is partitioned by �𝑥%(/'$), 𝑥%/�, 𝑘 = 1, 2,⋯ , +
%
. 

Hence the subintervals is 2ℎ. Similar to when deriving the composite midpoint error formula we obtain 𝐼(𝑓) −
𝑆+(𝑓) = 	∑ �∫ 𝑓(𝑥)	𝑑𝑥"%&

"%(&+,)
− 𝑆+/(𝑓)�

+/%
/,$  where 𝑆+/(𝑓) is the basic Simpson formula on �𝑥%(/'$), 𝑥%/�. For each 𝑘 =

1, 2,⋯ , +
%
, it can be found that 

I 𝑓(𝑥)	𝑑𝑥
"%&

"%(&+,)
− 𝑆+/ = −

𝑓(?)(𝜉/)
2880 Z𝑥%/ − 𝑥%(/'$)[

B = −	
𝑓(?)(𝜉/)
2880 	(2ℎ)B. 

Splitting ℎB = ℎ? X)'*
+
Y and using the fact ∑ %

+
+/%
/,$ = 1, the following is obtained. 

J�I 𝑓(𝑥)	𝑑𝑥
"%&

"%(&+,)
− 𝑆+/(𝑓)�

+/%

/,$

= −
(𝑏 − 𝑎)ℎ?

180 J]
2
𝑛_

+
%

/,$

𝑓(?)(𝜉/) = −
(𝑏 − 𝑎)ℎ?

180 𝑓(?)(𝜉).			∎ 

 
In the numerical simulation, the factors $

$D-
 on Simpson, $

$%
  on trapezoidal, and $

&
	 on midpoint do not play significant 

role, meanwhile  the power of ℎ is extremely crucial because it affects the convergence rate of the quadrature formulas. 
In this case, the midpoint is called has the second-order of convergence, written by  𝒪(ℎ%) and trapezoidal has the 
fourth-order 𝒪(ℎ?). The influence of order convergence to the approximation behavior will be examined in the 
following numerical simulations.   
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RESULTS AND DISCUSSION 

This section discusses some possibilities concerning with the sufficient conditions fulfillment and their 
corresponding with the convergence order attainable of several basic quadrature formulas. The methods were 
implemented by Matlab for 𝑛 = 2/, or  ℎ = )'*

%&
, 𝑘 = 1, 2,⋯ ,8. 

 
Simulation 1. 𝑓$(𝑥) 	= 𝑥𝑒'"%,𝑥 ∈ [0,4]. The exact integral up to 16-digit accuracy is given by  𝐼(𝑓$) = ∫ 𝑓$(𝑥)

?
- 𝑑𝑥 =

0.499999943732413. In this case, the function 𝑓 and all its derivatives are continuous on domain [0,4].  The results 
are summarized on Table 2.  The best accuracy is provided by Simpson, followed by midpoint and trapezoidal. It is 
found that the convergence rate E(4)

E(4/%)
≈ 4 = 2% for midpoint and trapezoidal and E(4)

E(4/%)
≈ 16 = 2? for Simpson.  The 

power of 2 indicates the convergence order and it provides the information of approximation speed towards the exact. 
If the mesh is refined from  ℎ to ℎ/2, the error reduces up to 25%	for midpoint and trapezoidal and up to 6.25% for 
Simpson. This means that the convergence orders are perfectly attainable by three quadrature formulas. This is not 
surprising since 𝑓$ satisfies the sufficient conditions properly. This perfect situation is rarely found in the applied 
sciences; some conditions are frequently flawed. 
 

Table 2. Errors and convergence rates of Simulation 1. 

𝑘 𝑛 Midpoint; Rate Trapezoidal: Rate Simpson; Rate 
1 2 3.5347	 ×	10'$; 	1.49 4.2673	 ×	10'$; 	4.47 4.0231	 ×	10'$; 	26.08 
2 4 2.3650	 ×	10'$; 	4.52	 9.5119	 ×	10'%; 	4.45	 1.5421	 ×	10'%; 	4.84	 
3 8 5.2342	 ×	10'%; 	4.79	 2.1388	 ×	10'%; 	4.08	 3.1885	 ×	10'!; 	22.63	 
4 16 1.0906	 ×	10'%; 	4.14	 5.2414	 ×	10'!; 	4.02	 1.4090	 ×	10'?; 	16.99	 
5 32 2.6331	 ×	10'!; 	4.03	 1.3041	 ×	10'!; 	4.00	 8.2927	 ×	10'&; 	16.23	 
6 64 6.5283	 ×	10'?; 	4.00	 3.2565	 ×	10'?; 	4.00	 5.1099	 ×	10'F; 	16.06	 
7 128 1.6287	 ×	10'?; 	4.00	 8.1388	 ×	10'B; 	4.00	 3.1825	 ×	10'D; 	16.00	 
8 256 4.0697	 ×	10'B; 	4.00	 2.0346	 ×	10'B; 	4.00	 1.9873	 ×	10'G; 	16.00	 

 
 
Simulation 2. 𝑓%(𝑥) = √1 − 𝑥%, 𝑥 ∈ [−1, 1]. The exact value of integral is the area of a half unit-circle, i.e. 𝐼(𝑓%) =
∫ √1 − 𝑥%$
'$ 	𝑑𝑥 = H

%
≈ 1.570796326794897. This function is continuous on [−1, 1], differentiable in interior but 

not differentiable at boundaries 𝑥 = ±1. The numerical sumulation results are exhibited on Table 3.  
 

Table 3. Errors and convergence rates of Simulation 2. 

𝑘 𝑛 Midpoint; Rate Trapezoidal: Rate Simpson; Rate 
1 2 4.2920	 ×	10'$; 	2.66 5.7080	 ×	10'$; 	2.79 2.3746	 ×	10'$; 	2.87 
2 4 1.6125	 ×	10'$; 	2.74 2.0477	 ×	10'$; 	2.81 8.2762	 ×	10'%; 	2.85	 
3 8 5.8887	 ×	10'%; 	2.78 7.2942	 ×	10'%; 	2.82 2.8999	 ×	10'%; 	2.84	 
4 16 2.1168	 ×	10'%; 	2.80 2.5887	 ×	10'%; 	2.83 1.0202	 ×	10'%; 	2.84	 
5 32 7.5471	 ×	10'!; 	2.82 9.1698	 ×	10'!; 	2.83 3.5976	 ×	10'!; 	2.83	 
6 64 2.6796	 ×	10'!; 	2.82 3.2451	 ×	10'!; 	2.83 1.2702	 ×	10'!; 	2.83	 
7 128 9.4937	 ×	10'?; 	2.83 1.1479	 ×	10'!; 	2.83 4.4879	 ×	10'?; 	2.83	 
8 256 3.3600	 ×	10'?; 	2.83 							4.0593	 ×	10'?; 	2.83 1.5862	 ×	10'?; 	2.83	 
 
It is found that the ratios for midpoint and trapezoidal are around 2.8 and the convergence order is derived as 

follows: 2I = 2.8 implies 𝑝 = J2K %.D
J2K %

≈ 1.485. It means that the second-order 𝒪(ℎ%) convergence is not reachable, but 
it's only around 𝒪(ℎ$.B) which is often called superlinear convergence order. Special attention on Simpson performance 
that is not better than others in the accuracy as well as the convergence order.  It is also discovered that the Simpson's 
reaches only a superlinear order 𝒪(ℎ$.B) much lower than supposed 𝒪(ℎ?). In fact, the Simpson formula requires 
computational cost twice as much than two others.  This is not surprising since 𝑓% failed to meet the sufficient condition. 
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Simulation 3. Consider the following function. 

𝑓(𝑥) = �

1
1 − 𝑥 , −2 ≤ 𝑥 ≤ 0
1

1 + 𝑥 , 0 < 𝑥 ≤ 2.
 

The exact value up to 16-digit accuracy is 𝐼(𝑓!) = 2 ln 3 = 2.197224577336219. This function is not differentiable 
only at the interior 𝑥 = 0 yet differentiable at points other than zero. The results are displayed on Table 4.  

 

Table 3. Errors and convergence rates of Simulation 3. 

𝑘 𝑛 Midpoint; Rate Trapezoidal: Rate Simpson; Rate 
1 2 1.8028	 ×	10$; 	9.14 4.6944	 ×	10$; 	3.44 9.1389	 ×	10'$; 	36.56 
2 4 1.9722	 ×	10'$; 	3.09 1.3611	 ×	10'$; 	3.77 2.4998	 ×	10'%; 	9.01	 
3 8 6.3891	 ×	10'%; 	3.61 3.6109	 ×	10'%; 	3.93 2.7754	 ×	10'!; 	12.27	 
4 16 1.7715	 ×	10'%; 	3.87 9.1968	 ×	10'!; 	4.00 2.2612	 ×	10'?; 	14.58	 
5 32 4.5751	 ×	10'!; 	3.96 2.3108	 ×	10'!; 	4.00 1.5508	 ×	10'B; 	15.58	 
6 64 1.1539	 ×	10'!; 	4.00 5.7845	 ×	10'?; 	4.00 9.9540	 ×	10'&; 	15.89	 
7 128 2.8913	 ×	10'?; 	4.00 1.4466	 ×	10'?; 	4.00 6.2646	 ×	10'F; 	15.97	 
8 256 1.8083	 ×	10'?; 	4.00 							3.1668	 ×	10'B; 	4.00 1.5331	 ×	10'D; 	15.99	 

According to simulation results the convergence orders are achieved very well by three formulas eventhough the 
sufficient conditions were not satisfied. The midpoint and trpezoidal formula attain the second-order 𝒪(ℎ%) anda the 
Simpson formula reaches the fouth-order 𝒪(ℎ?). This confirm than a failure to satisfy the sufficient condition does not 
make invalid the theorem conclusion. Returning to the illustration of the store advertisement at the beginning of the 
background, no conclusions can be drawn for consumers who spend less than IDR100,000,-. 

CONCLUSION 

The numerical implementation had been conducted for three distinct examples. The first example represents 
the case where all the conditions of the theorem are satisfied and the order of convergence is reached perfectly. 
The second example deputizes the case where the sufficient conditions are not met only at the boundary points 
and the order of convergence is not achieved maximally. The third example shows the case where the sufficient 
conditions are not fulfilled at single interior point but order of convergence is well-achieved. From those 
numerical simulations it can be concluded that non-fulfillment of sufficient conditions does not imply 
unattainable the order of convergence. In case all sufficient conditions are fulfilled, the Simpson method is much 
better than other two. 

It should be noted that the higher demand to the convergence order, the higher computational complexity 
and, without a doubt, the more sensitive to computer rounding errors. The incompatibility between theoretical 
background and computer output could be caused by such factors, especially when computer rounding errors 
dominate over approximation errors. Hence, it should take into consideration a trade-off  between the expected 
accuracy and the computational effort. In addition to the rounding error issue, scientists who use mathematics 
directly through the computer programs are suggested to consider the possibility that the computational results 
are not optimal because of unfulfilled the sufficient conditions. 
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