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1. Introduction 
Industry is considered a major factor in sustainable development in several countries because of its 

high impact on the people's economy. Continuous monitoring of production played an important role 

in the early industrial world. Various fields in the industry, including the field of Agriculture and the 

home Industry (e.g., Batik and Food). The traditional method of inspection of industrial production 

depends on visual observation with the help of human experience and training to detect production 

disturbances. The traditional method approach is only based on cognitive and psychological aspects, 

which can lead to errors due to illusions [1]. To assist decision-makers in intelligent systems (artificial 

intelligence/AI), recognition of plant diseases based on intelligent system techniques has been proposed 

in several literatures [2]–[5].  

In the context of AI, deep learning is an important part of machine learning that is in great demand 

and has become increasingly important in recent years [6], [7]. Deep learning has been used in various 

fields of application, such as hyperspectral image analysis [8]–[10]. The advantages of deep learning 

include that this approach is based on neural networks that can exploit feature hierarchies and their 

interactions. In the deep learning extraction process, feature selection and classification can be identified 
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 This paper proposes a convolutional neural network architectural design 

approach using the modified particle swarm optimization (MPSO) 

algorithm. Adjusting hyper-parameters and searching for optimal network 

architecture from convolutional neural networks (CNN) is an interesting 

challenge. Network performance and increasing the efficiency of learning 

models on certain problems depend on setting hyperparameter values, 

resulting in large and complex search spaces in their exploration. The use 

of heuristic-based searches allows for this type of problem, where the main 

contribution in this research is to apply the MPSO algorithm to find the 

optimal parameters of CNN, including the number of convolution layers, 

the filters used in the convolution process, the number of convolution 

filters and the batch size. The parameters obtained using MPSO are kept 

in the same condition in each convolution layer, and the objective function 

is evaluated by MPSO, which is given by classification rate. The optimized 

architecture is implemented in the Batik motif database. The research 

found that the proposed model produced the best results, with a 

classification rate higher than 94%, showing good results compared to 

other state-of-the-art approaches. This research demonstrates the 

performance of the MPSO algorithm in optimizing CNN architectures, 

highlighting its potential for improving image recognition tasks. 
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through an in-depth architectural optimization process. The most common architecture is the 

convolutional neural network (CNN), as shown in [11]–[16].  

In computer vision (CV) applications, CNN has shown better performance. Model results are often 

reused to solve problems in new problems using methods such as transfer learning [17]–[19]. Transfer 

learning involves a pre-trained model and some training from further layers using the new dataset. When 

building a new model from scratch, one of the main challenges is choosing the right number of 

convolution layers, kernel size, and number of output channels. Research related to this field has resulted 

in many architectures, including VGG16 [20], Inception [21], ResNet [22], and DenseNet [23]. In 

practice, it is not easy to evaluate network hyperparameters. In fact, the number of layers, the number 

of neurons per layer, or the different connections between layers are important elements and are 

essentially determined through intuition or through a series of test or error calculations, which takes a 

lot of time.  

Several approaches developed for hyperparameter optimization include random search (RS) [24], 

Bayes optimization (BO) [25], and metaheuristic algorithms [26]. Metaheuristics have been used 

successfully to solve optimization problems in science, engineering, and the industry. Several studies 

have been carried out well, including using a Genetic Algorithm (GA) [27], [28]Particle Swarm 

Optimization (PSO) [29], [30], Modified Particle Swarm Optimization (MoPSO) [31], [32]. Models 

that use traditional PSO particle positions are changed through random multiplication of layers from 

personal best (Pbest) or global solutions (Gbest). The PSO algorithm has many advantages, but it also 

has disadvantages. It quickly falls into the local optimum, has a low convergence speed in the iterative 

process, and loses population diversity. A modified particle swarm optimization proposed by Murinto et 
al. [33] will be used to overcome this.  

Deep neural networks (DNN) can be grouped into feed-forward neural networks (FCNN) and deep 

convolutional neural networks (CNN). One of the very good algorithms in deep learning (DL) is 

convolutional neural networks (CNN). CNN is an artificial neural network used in image processing and 

recognition. The first part of CNN is the actual convolution, a simple mathematical operation specifically 

used for image feature extraction. The next part is the pooling layer, followed by the activation layer and 

the fully connected layer, which is the final layer of the CNN architecture. Hyperparameters in CNN are 

variables that determine the network architecture, namely the number of channels, number of layers, 

kernel/filter size, padding, stride, and layer pooling parameters, as well as variables that determine how 

the network is trained, namely learning rate, dropout rate, normalization, regulation function ( L1, L2), 

type of activation function (Rectified Linear Unit/ReLU, Sigmoid, Tanh, etc.), batch size. The particle 

swarm optimization (PSO) algorithm is an evolutionary algorithm that uses a population of candidate 

solutions to reach an optimal solution in solving problems. 

This research aims to introduce a CNN optimization approach using the Modified PSO algorithm, 

which contributes to deep learning by leveraging MPSO to determine optimal hyperparameters 

efficiently. The model was validated on the Batik motif dataset, achieving classification accuracy.  

2. Method 
In this research, an optimization approach is used, and the MPSO algorithm is applied to optimize 

the CNN architecture parameters, denoted as MPSO-CNN. The aim is to select the most relevant 

parameters influencing the determination of good CNN performance and then apply the MPSO 

algorithm to find these optimal parameters. The parameters for optimization were selected after 

evaluating the performance of a CNN with an experimental study, where the parameters were changed 

manually. As explained above, different CNN parameter values produce varying results for the same task, 

for this reason, the goal here is to find the optimal architecture. The parameters chosen to optimize here 

are the number of convolutional layers, filter size or filter dimensions used in each convolution operation, 

number of filters to extract the next feature map (number of convolution filters), total batch size (this 

value represents the number of images inserted into the CNN in each block). 
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The general methodology of the proposal here is shown in Fig. 1; the “training and optimization” 

blocks are the most important part of the whole process, where CNN is initialized for the integration of 

optimization parameters through the application of the MPSO algorithm. In this process, MPSO is 

initialized through parameters given for execution and particle generation. Each particle is a possible 

solution, and the position has optimized parameters so that each solution describes a complete CNN 

training. Maintaining the Integrity of the Specifications. 

 

Fig. 1. Research Methodology MPSO-CNN Architecture 

The training process is an iterative cycle that ends when the particles generated through MPSO are 

evaluated for each generation. The calculation cost is higher and depends on database size, particle size, 

number of iterations of PSO, and number of particles in each iteration. The steps for CNN optimization 

using the MPSO algorithm are shown in Fig. 2. 

 

 

Fig. 2. Optimized Hyperparameter MPSO in CNN Architecture 

The first step in the process involves selecting a suitable database for training the convolutional neural 

network (CNN). This study obtained the dataset from Kaggle, where images were processed and 

classified using CNN. Selecting an appropriate dataset is crucial for ensuring accurate model training and 

validation. Next, the particle population for the Modified Particle Swarm Optimization (MPSO) 

algorithm is generated. This includes determining key parameters such as the number of iterations, 

particles, inertial weights, cognitive constants (W1), and social constants (W2). These parameters are 

vital in guiding the optimization process to find the most suitable CNN architecture.  



136 International Journal of Advances in Intelligent Informatics   ISSN 2442-6571 

 Vol. 11, No. 1, February 2025, pp. 133-142 

 

 

 Murinto and Winiarti (Convolutional neural networks optimized hyperparameter architectures…) 

Once the MPSO parameters are set, the CNN architecture is initialized with optimized parameters 

obtained through MPSO. This includes defining the number of convolution layers, filter size, number 

of convolution filters, and batch size. After initialization, CNN is ready to process the selected database 

and begin training. During the training and validation phase, CNN reads and processes the input dataset 

by dividing it into training, validation, and testing subsets. The model undergoes iterative training, 

measuring its performance based on the classification rate. This classification rate is then assigned to the 

MPSO algorithm as part of the objective function. 

The objective function is evaluated to determine the best model configuration. In this study, the 

classification rate serves as the only objective function. The MPSO algorithm continuously assesses 

different CNN configurations to find the optimal parameter settings that maximize classification 

accuracy. Following this, the MPSO parameters, specifically the velocity and position of particles, are 

updated. These updates depend on the best-known positions in the search space, including each particle's 

personal best position (Pbest) and the global best position (Gbest) of the entire swarm. The process 

repeats iteratively, evaluating all particles and updating their positions until the stopping criterion is met, 

which, in this case, is determined by the predefined number of iterations. This ensures the algorithm 

explores and converges toward the most optimal CNN architecture. Finally, the optimal solution is 

selected, where the best-performing particle represents the optimal CNN configuration. This final Gbest 

value signifies the best set of parameters for the CNN model, ensuring high classification accuracy and 

efficient deep learning performance. 

2.1. Modified Particle Swarm Optimization (MPSO) 
The standard particle swarm optimization (PSO) technique, first introduced by Eberhart and 

Kennedy (1995), is a stochastic optimization technique that is similar to the behavior of a flock of birds 

(birds flocking) or the sociological behavior of a group of humans. The basic idea of PSO is to involve a 

scenario where a flock of birds is searching for food sources in an area. All the birds don't know exactly 

where the food is, but with each iteration, they will find out how far the food will be from its original 

position. The best strategy will be followed by the bird closest to the food and also from the previous 

best position achieved. PSO is built with the optimization concept through a particle swarm. Each 

particle is in a position in the search space with a fitness value, evaluated through the fitness function to 

optimize each particle representing the quality of that position. All particles fly through the 

multidimensional search space by adjusting their position based on their own experience and that of 

their neighbors. PSO consists of a group (swarm) of particles randomly initialized as points in n-

dimensional space in search of the optimal solution to an optimization problem. In PSO, the population 

is also known as a swarm; candidate solutions are coded as particles in the search space. PSO starts with 

a random initialization of the population of particles. Particles move through the search space in search 

of the optimal solution by updating each particle's position based on its own experience and that of the 

particles around it. During the movement, the current position of particle i is represented by a vector 

𝑋𝑋𝑖𝑖 = 𝑋𝑋𝑖𝑖1,𝑋𝑋𝑖𝑖2, …𝑋𝑋𝑖𝑖𝑖𝑖, where D is the dimension of the search space. The velocity of a particle 𝑖𝑖 is 

represented as 𝑉𝑉𝑖𝑖 = 𝑉𝑉𝑖𝑖1,𝑉𝑉𝑖𝑖2, …𝑉𝑉𝑖𝑖𝑖𝑖. Whereas the best previous position of a particle is recorded as the 

personal best and is named as Pbest and the best position obtained by the swarm as long as the global 

best is named as Gbest. PSO seeks the optimal solution by updating the position and velocity of each 

particle through equations (1) and (2). 

𝑣𝑣𝑖𝑖𝑖𝑖𝑡𝑡+1 = 𝑣𝑣𝑖𝑖𝑖𝑖𝑡𝑡 + 𝑐𝑐1 ∗ 𝑟𝑟1𝑖𝑖 ∗ (𝑝𝑝𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡 ) + 𝑐𝑐2 ∗ 𝑟𝑟2𝑖𝑖 ∗ �𝑝𝑝𝑔𝑔𝑔𝑔 − 𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡 �   (1) 

𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡+1 = 𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡 + 𝑣𝑣𝑖𝑖𝑖𝑖𝑡𝑡+1   (2) 

where 𝑡𝑡 is the 𝑡𝑡𝑡𝑡ℎ  iteration in the evolutionary process. 𝑑𝑑 ∈ 𝐷𝐷 denotes the 𝑑𝑑𝑡𝑡ℎ dimension in the search 

space 𝑐𝑐1 and 𝑐𝑐2 are acceleration constants, representing the weighting of the stochastic acceleration term 

pushing each particle towards the 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (𝑝𝑝𝑖𝑖𝑖𝑖) and 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 (𝑝𝑝𝑔𝑔𝑔𝑔) positions. While  𝑟𝑟1𝑖𝑖 and  𝑟𝑟2𝑖𝑖  are 

random numbers that have a uniform distribution in the range [0,1]. The variables 𝑝𝑝𝑖𝑖𝑖𝑖 and 𝑟𝑟𝑔𝑔𝑔𝑔 represent 

the elements of pbest and best in the d-dimensional. Vid is constrained by predefined maximum velocity 
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for modified particle swarm optimization algorithm (MPSO), 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚,𝑑𝑑 𝑡𝑡𝑡𝑡 [−𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚], 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 =
�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖1,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖2, … ,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑑𝑑�, representing the previous best position (best fitness value) of the particle 

to 𝑖𝑖. Whereas 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = (𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔1,𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔2, . .𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑)  represents the previous best position of the 

population. The development of standard particle swarm optimization (PSO) was carried out by 

researchers due to the weaknesses of the PSO technique through proposing different strategies to 

increase its effectiveness, efficiency and robustness in dealing with optimization problems. The 

development includes four groups, namely: initialization and modification of parameters, particle 

position mutations, topological structures and integration with other techniques (hybrid). 

3. Results and Discussion 

3.1. Batik Dataset 
The data used in this research uses image data of batik motifs originating from the North Coastal 

Region of Java. The results of the data collection are 6 classes of batik motifs from the North Coastal 

Region of Java and 1 negative class (when you do not recognize other than the six specified motifs). 

These motifs consist of Buketan, Singa Barong, Mega Mendung, Seven Rupa, Liong, Jlamprang and 

Negative class (when you don't recognize other than the six motifs above). The total amount of data is 

805 images of batik motifs. The image dataset comes from Kaggle 

(https://www.kaggle.com/datasets/ilyamfsl/batik-pesisir-utara-jawa-with-negative-class-v2). The image 

data is then subjected to pre-processing, namely data augmentation, including zoom, random flip, 

random brightness, rotation, random distortion, and skew. The function of the augmentation process is 

to add new images from existing images. Another function of augmentation is to reduce the occurrence 

of overfitting during the testing process. Ultimately, it produced 500 images in the 6 batik motif classes 

and 700 in the Negative class. Fig. 3 shows the 6 batik motifs used in this research. 

   

(a) (b) (c ) 

   

(d) (e) (f) 

Fig. 3. Batik Motives (a) Mega Mendung (b) Singa Barong (c) Liong Pekalongan (d) Jlamprang  (e ) Buketan  

(f) Tujuh Rupa 

3.2. Experiment Parameters 
In this experiment, the CNN parameter settings involve the learning function, the activation function 

in the classification layer, the non-linear activation function, and the number of epochs. Meanwhile, the 

exact parameters in MPSO are the number of particles, number of iterations, inertial weights, cognitive 

and social constants, and position initialization using a logistic map. The dynamic parameters optimized 

using MPSO are the number of convolution layers, filters, and batch size. 

3.3. PSO-CNN Hyperparameter Optimization Process 
The hyperparameter optimization approach in this study is written as MPSO-CNN, which consists 

of implementing a particle with 4 places, with one position for each parameter optimized. Table 1 displays 
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the details of the particle composition where the 1 is X1 place corresponds to the number of layers with 

a search space from 1 to n.  

Table 1.  Setting CNN Parameters  

No. Parameter Values 

1. Epochs 10 

2. Activation function Softmax 

3. Non-linearity activation function ReLU 

4. Learning function Adam 

 

The method can produce an architecture with a minimum of one layer and a maximum of n layers, 

for this study 𝑛𝑛 =  3 was used. Place 2 is X2 which represents the number of convolution filters for 

characteristic extraction, with a search space from 32 to 18 filters. 3

rd

 place is X3 is the filter size; search 

space from 1 to 4 where this value represents the position, the value obtained is mapped with the value 

from Table 2 to get the filter size (i.e. the particle generates a value of 1 which represents a filter size of 

[3 x 3], to get a value of the 2 filter sizes will be [5 x 5] and so on, accordingly, for each value.  

Table 2.  Setting Parameter MPSO 

No. Parameter Values 
1. Particles 6 

2. Iteration 20 

3. Inertia Weight (W) 0.1 

4. Social Constant (C1) 2 

5. Cognitive Constant (C2) 2 

 

The last position is X4 which represents the batch size (x4). Initialization involves a search space 

range from 32 to 256. This optimization process maintains parameter consistency between layers in the 

same state. After execution, MPSO generates a particle with 3 convolutional layers (X1), 50 filters (X2), 

a filter dimension of 3 x 3 (X3), and a batch size of 50 (X4). the same number of filters (X2) and filer 

size (X3) will be applied to the three convolution layers of the CNN. Fig. 4 shows and Setting parameter 

in the MPSO-CNN approach shown in Table 3. 

 

Fig. 4. Particle Structure in MPSO-CNN 

Table 3.  Setting Parameter in the MPSO-CNN Approach 

Particle Hyperparameter Search Space 
X1 Number of Convolutional layers [1, 3] 

X2 Number of filters [32, 128] 

X3  Filter Size [1, 4] 

X4 Batch Size [40, 256] 

 

In this process, the classification rate (precision) gives the objective function, which returns the CNN 

after being trained with the parameters generated by the PSO. 
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3.4. Model Testing 

3.4.1. CNN Model Testing 
Table 4 shows the results of tests on the data testing the batik image dataset and the CNN model 

confusion matrix [34]. 

Table 4.  Confusion Matrix CNN Model 

Motive Precision Recall  F1-Score Support 
Buketan 0.8113 0.8600 0.8350 50 

Jamplang 0.9091 0.8000 0.8511 50 

Liong 0.8000 0.4000 0.5333 50 

Mega Mendung 0.6866 0.9200 0.7863 50 

Negatif 0.6495 0.8873 0.7500 71 

Singa Barong 0.7818 0.8600 0.8190 50 

Tujuh Rupa 0.9667 0.5800 0.7250 50 

Accuracy   0.7665 371 

 

The accuracy of the CNN model when used to classify batik image datasets is 77%. Confusion Matrix 

show as Fig. 5. 

 

Fig. 5. Confusion Matrix 

3.4.2. MPSO-CNN Model Testing 
Table 5 shows the testing results on the batik dataset testing data and the MPSO-CNN model 

confusion matrix. The accuracy of the MPSO-CNN model when used to classify the batik motive dataset 

is 94% with a layer number of 3, a filter size of [7 x 7], and a Batch size of 256. From the results of tests 

on 2 models, the CNN model and the MPSO-CNN Model, the highest accuracy was obtained when 

classifying batik images using the MPSO-CNN model, namely 94%. The increased level of accuracy 

when compared to ordinary CNN models indicates that the use of optimized architecture has a good 

effect on the level of accuracy obtained. 
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Table 5.  Confusion Matrix MPSO-CNNModel 

Motive Precision Recall  F1-Score Support 
Buketan 0.7101 0.9800 0.9238 50 

Jamplang 0.7959 0.7800 0.8878 50 

Liong 0.8696 0.4000 0.7488 50 

Mega Mendung 0.8929 1.0000 0.9484 50 

Negatif 0.7556 0.9577 0.9487 71 

Singa Barong 0.9574 0.9000 0.9288 50 

Tujuh Rupa 0.9730 0.7200 0.9296 50 

Accuracy   0.94032 371 

4. Conclusion 
This paper proposes an algorithm-modified particle swarm optimization (MPSO) for optimized 

hyperparameters in CNN.  This also helps the PSO algorithm to continue searching other areas in the 

practical settlement space. Compared to different PSO variants, the PSO proposed in this paper shows 

that MPSO has better stability, quality of final completion, and convergence speed. From the results of 

tests carried out on 2 models, namely the CNN model and the MPSO-CNN model, it was found that 

the highest accuracy was obtained when classifying batik images using the MPSO-CNN model VGG16, 

namely 94%. The increased level of accuracy when compared to ordinary CNN models indicates that the 

use of MPSO for optimized hyperparameters has a good effect on the level of accuracy obtained. As 

further research, we plan to implement the MPSO algorithm that results in classification images in the 

Agricultural Industry, especially for the classification of chili diseases based on leaves. 
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