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Electroencephalography (EEG) is a key neurotechnology that enables non-

invasive, high-temporal resolution monitoring of brain activity. This review 

examines recent advancements in EEG-based neuroscience from 2021 to 

2025, with a focus on applications in neurodegenerative disease diagnosis, 

cognitive assessment, emotion recognition, and brain-computer interface 

(BCI) development. Twenty peer-reviewed studies were selected using 

predefined inclusion criteria, emphasizing the use of machine learning on 

EEG data. Each study was assessed based on EEG settings, feature extraction, 

classification models, and outcomes. Emerging trends show increased 

adoption of advanced computational techniques such as deep learning, capsule 

networks, and explainable AI for tasks like seizure prediction and psychiatric 

classification. Applications have expanded to real-world domains including 

neuromarketing, emotion-aware architecture, and driver alertness systems. 

However, methodological inconsistencies (ranging from varied preprocessing 

protocols to inconsistent performance metrics) pose significant challenges to 

reproducibility and real-world deployment. Technical limitations such as 

inter-subject variability, low spatial resolution, and artifact contamination 

were found to negatively impact model accuracy and generalizability. 

Moreover, most studies lacked transparency regarding bias mitigation, dataset 

diversity, and ethical safeguards such as data privacy and model 

interpretability. Future EEG research must integrate multimodal data (e.g., 

EEG-fNIRS), embrace real-time edge processing, adopt federated learning 

frameworks, and prioritize personalized, explainable models. Greater 

emphasis on reproducibility and ethical standards is essential for the clinical 

translation of EEG-based technologies. This review highlights EEG’s 

expanding role in neuroscience and emphasizes the need for rigorous, 

ethically grounded innovation. 
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1. INTRODUCTION 

Electroencephalography (EEG) has emerged as a pivotal neurotechnology, offering non-invasive, high-

temporal resolution monitoring of brain activity that is foundational to both clinical neurophysiology and 

cognitive neuroscience research. Since its invention by Hans Berger in the early 20th century, EEG has evolved 

from analog paper-based recordings to high-density digital systems integrated with sophisticated 

computational tools [1]. Its ability to capture real-time electrophysiological signals makes EEG uniquely suited 

for investigating dynamic brain states, such as sensory processing, cognition, sleep cycles, and epileptic events 

[2][3]. Over the past two decades, significant advances have transformed EEG into a more adaptive and 

application-oriented modality. 

The adoption of machine learning (particularly deep learning, capsule networks, and explainable AI) has 

enhanced EEG’s potential for predictive modeling in domains such as seizure detection, psychiatric 

classification, and neurorehabilitation [4]. Additionally, the development of wearable EEG systems, dry 

electrodes, and wireless telemetry has increased the feasibility of mobile EEG applications in naturalistic 

environments [5]. Multimodal combinations, such as EEG-fNIRS or EEG-eye-tracking integration, further 

enrich the interpretability of brain signals by contextualizing electrical activity with hemodynamic or 

behavioral data [6]. These innovations have been complemented by analytical methods including time-

frequency decomposition, source localization, and graph-theoretic network modeling [7]. 

Despite this progress, the field remains fragmented. Many claims of technological breakthroughs rely on 

studies with limited sample sizes, non-standardized EEG protocols, or insufficient validation across 

populations. Persistent issues such as motion artifacts, low spatial resolution, and inter-subject variability 

continue to hinder reproducibility and clinical translation [8]. Moreover, while AI-driven approaches offer 

promise, they also introduce concerns regarding model interpretability, fairness, and data privacy (issues often 

underexplored in existing literature) [9][10]. 

Although several review papers have addressed the evolution of EEG in isolation or within specific 

subdomains, few have critically synthesized recent trends from an interdisciplinary, systems-level perspective. 

This review aims to fill that gap by providing a focused evaluation of EEG-based neuroscience studies 

published between 2021 and 2025. Specifically, we examine how recent developments in AI integration, 

multimodal systems, and real-world applications are reshaping the landscape of EEG research. By analyzing 

the methodological rigor, translational barriers, and ethical implications of contemporary EEG innovation, this 

review offers a timely roadmap for advancing EEG toward scalable, real-time, and ethically aligned 

neurotechnologies. 

 

2. FUNDAMENTALS OF EEG TECHNOLOGIES 

EEG measures fluctuations in electrical potentials generated by ionic currents between neurons, requiring 

highly sensitive systems due to its microvolt-range signals. Accurate interpretation hinges on minimizing noise 

and artifacts, making a solid grasp of EEG’s physiological basis essential (particularly for applications in 

cognitive research and clinical diagnosis of conditions like epilepsy, dementia, and sleep disorders) [11]. Signal 

quality is influenced by multiple technical factors, including correct electrode placement (e.g., 10–20 system), 

electrode type (wet or dry), and preprocessing steps such as amplification, filtering, and segmentation. EEG 

signals span characteristic frequency bands, from delta (deep sleep) to gamma (focused attention), which reflect 

mental and physiological states. Proper interpretation not only requires knowledge of these bands but also 

advanced analytical methods like time-frequency analysis, functional connectivity, and machine learning for 

pattern recognition [12]. 

 

2.1. Electrode Placement 

EEG electrode placement is a critical factor in ensuring the quality and accuracy of brain activity 

recordings. To achieve consistent and reproducible results across individuals and studies, electrodes must be 

placed systematically on the scalp. The most widely adopted method is the international 10-20 system, which 

organizes electrodes based on anatomical landmarks such as the nasion, inion, and preauricular points. This 

system divides the scalp into proportional distances (10% and 20% intervals) ensuring standardization across 

clinical and research settings. Electrode labels like “F” for the frontal lobe and “z” for the midline enable 

precise identification of electrode positions (e.g., Fz, F3, F4), supporting consistent localization of brain regions 

involved in various cognitive and neurological functions [13]. 

Beyond the standard 10-20 configuration (Figure 1), modern EEG systems increasingly employ high-

density electrode arrays, consisting of up to 128 or 256 electrodes. These advanced setups offer enhanced 

spatial resolution, making them particularly valuable in clinical diagnostics and neuroscience research. High-

density arrays allow for more accurate mapping of localized brain activity, which is essential for applications 
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such as identifying epileptic foci, conducting functional brain imaging, and developing brain-computer 

interfaces (BCIs). The added electrodes capture subtle electrical variations across smaller cortical regions, 

enabling researchers and clinicians to observe more granular neural dynamics and improve the precision of 

data interpretation in both experimental and clinical environments [14]. 

 

 
(a) Left side of head (b) Top of head 

Figure 1. EEG electrode 10-20 system [15] 

 

Electrode types and materials also play an important role in the placement and effectiveness of EEG can 

be seen in Figure 2. The electrodes are typically made of materials like silver/silver chloride (Ag/AgCl) or 

gold, which have excellent conductivity properties, allowing for efficient detection of the small electrical 

signals emitted by the brain. More modern EEG systems may also use dry electrodes, which eliminate the need 

for conductive gel or paste, making them more convenient for patients, especially in long-term monitoring or 

ambulatory settings. These dry electrodes are often designed for improved comfort and easier placement, as 

they require less preparation time [16]. 

 

  
 

 
(a) AgCl wet EEG 

electrode 

(b) Gold wet EEG 

electrode 

(c) AgCl dry EEG 

electrode 

(d) Gold dry EEG 

electrode 

Figure 2. EEG electrode types and materials [17][18] 

 

Building upon standardized placement and material innovations, EEG headsets have emerged as practical, 

user-friendly tools for recording brain activity in both research and applied settings can be seen in Figure 3. 

These headsets integrate electrodes (either wet or dry) into wearable, often wireless designs that simplify the 

setup process and improve usability, especially in non-clinical or mobile environments. EEG headsets typically 

position sensors according to the 10–20 system or its simplified variants, allowing consistent monitoring of 

cognitive and emotional states. Advances in miniaturized electronics, Bluetooth or Wi-Fi transmission, and 

onboard signal processing have enabled real-time EEG monitoring with relatively high fidelity [19].  

 

  

 
 

(a) "BESDATA" EEG 

headset 

(b) “Emotiv” EEG 

headset 

(c) “Muse” EEG 

headset 

(d) “OpenBCI” EEG 

headset 

Figure 3. EEG headsets [17],[20]-[22] 
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Commercially available headsets such as Emotiv, Muse, and OpenBCI exemplify this trend, offering 

platforms for applications ranging from attention tracking and neurofeedback training to mental workload 

estimation and brain-computer interface (BCI) development. Although EEG headsets still face limitations in 

spatial resolution and signal noise compared to high-density systems, their portability, comfort, and 

accessibility continue to expand the reach of EEG technology into daily life, education, mental health, and 

consumer neurotechnology domains [23]. 

 

2.2. Brainwave Frequency Bands 

EEG (electroencephalography) signals are categorised based on frequency bands that reflect various 

forms of electrical oscillation activity in the brain. This division is not only technical in nature, but also highly 

significant physiologically, as each frequency band is closely related to states of consciousness, cognitive 

activity, and specific emotional or behavioural states. The five main frequency bands commonly analysed in 

EEG include delta, theta, alpha, beta, and gamma waves can be seen in Table 1. This classification of EEG 

frequency bands provides an important framework for understanding the dynamics of human brain activity. 

Not only used in neuroscience research, EEG spectral analysis also serves as an important diagnostic tool in 

detecting epilepsy (where abnormal wave patterns may appear in specific bands), sleep disorders, 

consciousness disorders, and evaluating brain function during anaesthesia or coma. The ability to isolate these 

frequency bands enables a more precise approach in neuromonitoring and EEG-based neurofeedback 

interventions. 

 
Table 1. EEG frequency bands [24] 

Brainwave Frequency Physiological State Clinical Characteristics & Significance 

Delta 0.5 – 4 Hz 

Deep sleep (non-REM 

stages 3 & 4), 

unconsciousness 

• High amplitude and lowest frequency. 

• Dominates during slow-wave sleep. 

• Presence of delta while awake may indicate diffuse or 

localized brain dysfunction 

Theta 4 – 8 Hz 

Light sleep, drowsiness, 

meditation, wakefulness 
in children 

• Linked to internalized mental activity 

• Associated with memory encoding and retrieval in adults. 

• Common in children during wakefulness. 

Alpha 8 – 13 Hz 
Relaxed, eyes closed but 

awake 

• Most prominent over occipital and parietal lobes. 

• Decreases with attention or cognitive demand. 

• Increases during mental relaxation or "wakeful rest". 

Beta 13 – 30 Hz 
Active thinking, problem-

solving, alertness 

• Found predominantly in frontal and central regions. 

• Increased beta may reflect stress or anxiety but also 

cognitive and motor readiness. 

• Dominates during focused mental activity. 

Gamma 30 – 100 Hz 

High-level cognitive 

processing, attention, 

consciousness 

• Highest frequency band. 

• Important in sensory integration, working memory, and 

conscious perception. 

• Detection is challenging due to low amplitude and 

susceptibility to artifacts. 

 

2.3. Amplification and Signal Processing in EEG Systems 

Electroencephalographic (EEG) signals are inherently minute, typically ranging between 10 and 100 

microvolts, which makes them vulnerable to distortion and interference from both physiological and 

environmental sources. The raw voltage fluctuations recorded by scalp electrodes are therefore too weak to be 

analyzed directly. To render these signals usable, the first essential step is amplification. Modern EEG systems 

utilize high-gain, low-noise differential amplifiers that are specifically designed to enhance the signal’s 

strength while maintaining signal integrity. These amplifiers not only magnify the neural signals but also 

optimize parameters such as input impedance and common-mode rejection ratio (CMRR), allowing them to 

effectively suppress external noise (particularly power line interference and other common-mode signals) 

without introducing additional artifacts or signal degradation [25]. 

Despite amplification, EEG signals remain susceptible to contamination from various artifacts. 

Physiological artifacts such as eye blinks, eye movements (electrooculogram, EOG), facial muscle activity 

(EMG), and cardiac signals (ECG) are common, particularly in awake subjects. Environmental noise, such as 

electromagnetic interference from nearby electronic devices or fluctuations due to poor electrode contact, can 

further obscure the desired neural activity. To address these challenges, signal preprocessing techniques are 

applied. Most systems integrate band-pass filters to retain frequencies of interest (e.g., 0.5–100 Hz) while 

attenuating irrelevant low- or high-frequency noise. Additionally, notch filters are employed to eliminate 50/60 

Hz line noise. For more sophisticated noise sources, EEG systems often rely on computational approaches such 
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as Independent Component Analysis (ICA), Principal Component Analysis (PCA), or regression-based artifact 

removal algorithms to identify and subtract contaminating components [26]. 

Following amplification and filtering, the cleaned EEG signal must be converted into a digital format for 

storage, visualization, and computational analysis. This process is conducted using Analog-to-Digital 

Converters (ADCs), which sample the analog waveform at regular intervals (commonly 250 Hz to 1000 Hz or 

higher) and convert it into a discrete numerical representation. High-resolution ADCs, typically operating at 

16- to 24-bit resolution, are essential to preserve the fidelity of the signal during digitization. Once in digital 

form, the EEG data can be processed using various software platforms for real-time monitoring, feature 

extraction (e.g., power spectral density, event-related potentials), machine learning classification, and long-

term archival [27] can be seen in Figure 4. 

 

 
Figure 4. Signal processing in EEG system 

 

2.4. Pattern Extraction and Interpretation 

Pattern extraction and interpretation is a critical phase that follows the digitization of raw EEG signals, 

enabling the transformation of complex biosignals into meaningful representations of brain activity. This 

process is fundamental in both clinical neurophysiology and cognitive neuroscience, as it facilitates the 

identification of underlying neural mechanisms and the detection of potential pathological alterations. One of 

the primary approaches in this stage is spectral analysis, which decomposes EEG signals into constituent 

frequency bands (delta, theta, alpha, beta, and gamma) each corresponding to specific brain states such as sleep, 

relaxation, attention, or high-level cognitive activity [28]. Methods like Fast Fourier Transform (FFT) and 

Welch’s method are commonly used to quantify the power distribution within these bands, allowing researchers 

to assess cognitive states such as alertness, mental workload, or drowsiness [29]. 

To gain a more dynamic understanding, time-frequency analysis techniques such as Short-Time Fourier 

Transform (STFT), Wavelet Transform (WT), and Hilbert-Huang Transform (HHT) are employed. These 

methods enable tracking of how spectral content evolves over time, which is particularly valuable for detecting 

transient events like epileptic discharges or changes related to cognitive tasks [30]. Beyond frequency-based 

analyses, a broad array of EEG features is extracted, including statistical metrics (e.g., mean, variance, 

entropy), connectivity measures (e.g., coherence, phase-locking value), nonlinear characteristics (e.g., fractal 

dimension, Lyapunov exponent), and hemispheric asymmetry indices. 

These features serve as input for machine learning algorithms such as SVM, Random Forests, and deep 

learning models like CNNs. Such models have shown high accuracy in classifying mental states, detecting 

neurological disorders such as epilepsy, and identifying demographic traits like age or sex from EEG patterns 

[31]. Moreover, machine learning extends the interpretative power of EEG by detecting subtle, high-

dimensional patterns that are often imperceptible to manual analysis. With the integration of explainable AI 

(XAI) approaches, researchers can trace model predictions back to specific EEG features or brain regions, 

enhancing transparency and clinical applicability [32][33]. 

 

3. ADVANCEMENTS AND APPLICATION OF EEG 

In recent years, the application of electroencephalography (EEG) has advanced rapidly across various 

fields, including neuroengineering, clinical diagnostics, and brain-computer interface (BCI) systems. Between 

2021 and 2025 (Table 2), research in EEG has increasingly employed sophisticated computational approaches 

such as deep learning, self-supervised models, and hybrid frameworks to address complex tasks like epileptic 

seizure prediction, emotion recognition, and motor activity classification. To provide a comprehensive yet 

focused overview of these developments, a targeted literature review was conducted, covering studies 

published between January 2021 and May 2025. The search was performed across five major academic 

databases: IEEE Xplore, ScienceDirect, and SpringerLink. Boolean keyword combinations used in the search 
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strategy included terms such as (“electroencephalography” OR “EEG”) AND (“deep learning” OR “machine 

learning” OR “AI”) AND (“neurological disorder” OR “cognitive assessment” OR “mental workload” OR 

“human-computer interaction”). 

Inclusion criteria were defined to select only original, peer-reviewed research articles that utilized human 

EEG data and applied machine learning or advanced signal processing methods with clearly reported 

performance outcomes. Studies were excluded if they were reviews, editorials, animal-based research, or 

lacked methodological transparency. A total of 20 articles met the eligibility criteria and were included in the 

analysis. For each study, key information was extracted, including the names of the authors, research 

objectives, EEG acquisition methods (e.g., clinical vs. wearable systems), types of features used, classification 

approaches, and main findings. Although this review was conducted using a narrative approach, the selection 

and appraisal process followed a structured logic aligned with best practices for scoping reviews. This 

methodology aims to ensure transparency, reduce bias, and enhance the relevance of the synthesized insights 

presented in this paper. 

 
Table 2. EEG research in neuroscience 

Ref 
Authors & 

Year 
Objective EEG Type EEG Data Features Main Findings 

[34] 
Miladinović et 

al., 2021 

To investigate the 
correlation between 

EEG power bands and 

Parkinson's disease 
(PD) motor deficit 

scales 

Resting-state 
Quantitative EEG 

(qEEG) 

Delta (1–4 Hz), Theta 
(4–8 Hz), Alpha (8–13 

Hz), Beta (13–30 Hz); 

21 electrodes; 256 Hz 
sampling; PSD via 

Welch’s method 

Delta positively correlated 
with FOGQ; Alpha 

negatively correlated with 

FOGQ; Theta positively and 
Beta negatively correlated 

with UPDRS-III; No 

correlation with H&Y, 
BERG, MPAS, 6MWT, 

TUG 

[35] 
Safi et al., 

2021 

To improve early 

Alzheimer’s detection 

using EEG signals 

with Hjorth 
parameters 

20-channel EEG, 

10–20 system, 200 

Hz 

Variance, skewness, 
kurtosis, Shannon 

entropy, sure entropy, 

Hjorth parameters; used 
DWT, EMD, and band 

filtering 

Combining Hjorth features 

with DWT and KNN gave 

the best accuracy at 97.64 
percent 

[36] 
Molina et al., 

2022 

To explore EEG band 

coupling using 

complex network 
analysis in dyslexia 

diagnosis 

Resting-state EEG 

with auditory 

stimuli (white noise 
modulated at 4.8, 

16, 40 Hz) 

32-channel EEG, 500 
Hz sampling rate, intra-

electrode Phase-

Amplitude Coupling 
(PAC) using 

Modulation Index (MI), 

bands: Delta to Gamma 

Dyslexic children showed 

altered PAC network 

topology; notably reduced 
small-worldness during 4.8 

Hz stimulus; small-

worldness metric enabled 
classification with 73% 

accuracy 

[37] 
Gunawardena 

et al., 2023 

FC analysis & channel 
selection using 

manifold learning for 

AD detection 

Resting-state, 

bipolar montage 

23 bipolar channels, 

Isomap-GPLVM, kernel 
similarity matrix 

Better than standard FC 
methods; key changes in 

occipital–parietal & fronto-

parietal connectivity for AD 

[38] 
Jung et al., 

2023 

To assess emotional 

and brain responses to 

biophilic hospital 
designs 

Emotiv Epoc X 

(14-channel EEG) 

Power of theta, alpha, 
beta, gamma bands in 

multiple brain regions 

Biophilic design increases 

relaxation and reduces 

arousal; >90% ML 
classification accuracy 

[39] 
Wąsikowska, 

2023 

To study advertising 

effectiveness using 

EEG and biometrics 

19-channel EEG 

(Contec KT88-

2400) 

Frontal asymmetry, 

GSR, ECG, ICA-
cleaned EEG signals, Z-

score averaging 

Emotionally engaging ads 

are better remembered; EEG 
helps identify scenes with 

highest engagement. 

[40] 
Khalid et al., 

2024 

To analyze EEG sub-

bands for improved 

Parkinson’s Disease 
detection using GRU 

and PSD features 

Resting-state EEG 

(UCSD dataset) 

32-channel EEG, 512 

Hz sampling, PSD from 

delta, theta, alpha, mu, 
beta, gamma bands 

using Welch method 

Gamma and beta bands gave 
highest classification 

accuracy (up to 98.6%); 

GRU outperformed SVM 
and MCNN; alpha, beta, and 

gamma showed significant 

discriminatory power 

[41] 
Ahmed et al., 

2024 

Classify psychiatric 

disorders using EEG 

and deep learning 

models 

Resting-state EEG 

(eyes closed) 

19 channels, 945 

subjects, PSD and FC 
features across 6 

frequency bands, 1140 

total features 

CNN-LSTM, LSTM, Bi-

LSTM, KNN, and ANN 

achieved high accuracies (up 
to 98.94 percent) in 

classifying specific 

disorders like acute stress 
and adjustment disorder 
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Ref 
Authors & 

Year 
Objective EEG Type EEG Data Features Main Findings 

[42] 
Shafiei et al., 

2024 

Evaluate mental 
workload using 

coherence and wPLI 

features 

124-channel EEG 
Coherence, wPLI across 

Brodmann areas 

Combining coherence and 
wPLI improves prediction 

accuracy of mental 

workload domains. 

[43] 
Khayretdinova 

et al., 2024 

Predict brain sex using 

EEG and interpretable 
ML models 

Resting-state EEG 

(EO & EC) 

4298 qEEG features 

(PSD, complexity, 
connectivity) 

DCNN achieved 84.1% 

balanced accuracy and 89% 

ROC-AUC; left fronto-
central & parietal 

connectivity key. 

[44] 
Grootjans et 

al., 2024 

To highlight how EEG 

can study social 
interaction in 

developmental 

neuroscience 

Lab-based, 
hyperscanning, 

mobile EEG 

ERP, ERO, theta power, 
alpha/beta power, inter-

brain synchrony 

EEG captures social 
interaction dynamics; ERN 

modulated by context; inter-

brain synchrony reflects 

relationship closeness and 

engagement. 

[45] 
Yousaf et al., 

2024 

To enhance driver 
attention and road 

safety using EEG-

informed DRL models 

EMOTIV EPOC+ 

(14-channel) 

250 Hz sampling, 3 
cognitive states, ICA 

preprocessing, 

standardized features 

PPO model achieved 99.3% 

accuracy and outperformed 
DQN in classifying attention 

[46] 
Cataldo et al., 

2024 

To evaluate EEG 

complexity using 
Multiscale Fuzzy 

Entropy (MFE) to 

distinguish AD from 
healthy controls. 

Clinical EEG 

(resting-state, eyes 
closed) 

19 channels (10–20 

system); 60s signals; 
band-pass filtered 0.5–

30 Hz; analyzed in 

delta, theta, alpha, beta 
bands 

AD shows lower MFE at 

short scales, higher at long 

scales. AD > HC in 
delta/theta; AD < HC in 

alpha/beta bands. 

[47] 
Sheoran et al., 

2025 
Assess sex impact on 
emotion recognition 

62-channel EEG 
PSD (HHT), attention 

map 

Sex affects emotion EEG 

patterns: females (left), 
males (right); improves 

model accuracy 

[48] 
Wong et al., 

2025 

To develop an 

interpretable deep 
learning model for 

seizure detection using 

channel-level EEG 
annotations. 

Scalp EEG (TUSZ, 

RMH datasets) 

1-s single-channel 

segments; 22 bipolar 
channels; 250 Hz 

sampling; bandpass 

(0.1–60 Hz) and notch 
filter. 

Proposed CNN-

Transformer-MLP model 

achieved AUC 0.93 (TUSZ) 

and 0.82 (RMH); XAI via 
DeepSHAP identified key 

channels with 0.59 

localization sensitivity. 

[49] 
Catania et al., 

2025 

To study brain activity 

changes during PNES 

events and rest using 
EEG microstates 

Scalp EEG (21 

channels) 

1000 Hz, filtered 2–40 

Hz, 4 microstates (A–

D), analyzed duration, 
coverage, GFP 

Microstate C (linked to 

DMN) increases during rest, 

decreases during PNES 
events. 

[50] 
Dahiya et al., 

2025 

To develop an 

attention-based 
capsule network (At-

CapNet) using EEG-

tNIRS data for 
accurate clinical 

emotion recognition 

62-channel EEG 
(NeuroScan) 

Differential entropy 
across five bands, 

statistical metrics, PSD; 

mapped to 
spatiotemporal matrices 

At-CapNet using EEG-

tNIRS improved recognition 

by 1.52–14.35%, 
outperforming existing 

models in accuracy and 

computational efficiency 

[51] 
Morales et al., 

2025 

Review EEG time-

frequency in cognitive 
control development 

Event-related EEG 
Theta/delta power, 

ITPS, ICPS 

Midfrontal theta reflects 

control development; time-

frequency reveals age 

effects missed by ERP. 

[52] 
Byeon et al., 

2025 

To detect epileptic 

EEG using a brain 

stimulation model 
with optimized 

features 

19-channel EEG 

PSI-based topological 
features, GA-PSO for 

feature selection, sub-

band decomposition 

GA-PSO improved 
classification accuracy up to 

91.3%; cross-band features 

outperform single-band. 

[53] 
Colafiglio et 

al., 2025 

To classify 12 
motivational states 

using EEG and 

machine learning, 
under perception and 

imagery conditions 

High-density EEG 

(128-channels); 
evaluated with 14 

and 18 channel 

subset 

512 Hz sampling; 12 

motivational states; 
perception vs imagery; 

ERP-based features; 

LOSO validation 

Perception yielded higher 

accuracy than imagery; 18 

channels slightly better; best 
accuracy 88% 

 

Electroencephalography (EEG) continues to serve as a cornerstone in neuroscience research, offering 

valuable insights into brain activity across a spectrum of neurological, psychiatric, cognitive, and affective 

domains. Recent studies have increasingly leveraged EEG to investigate neurodegenerative diseases. For 

instance, Miladinović et al. [34] and Khalid et al. [40] demonstrated that specific EEG frequency bands 
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(particularly delta, theta, beta, and gamma) hold strong diagnostic potential for Parkinson’s disease, while 

Cataldo et al. [46] employed multiscale fuzzy entropy analysis to differentiate Alzheimer’s patients from 

healthy controls. Safi et al. [35] further enhanced early Alzheimer’s detection by integrating Hjorth parameters 

and wavelet-based features, achieving impressive classification accuracy. 

Parallel to clinical diagnostics, EEG is gaining ground in cognitive neuroscience and learning disorders. 

Molina et al. [36] utilized phase-amplitude coupling networks to reveal altered topologies in children with 

dyslexia. Additionally, Gunawardena et al. [37] and Shafiei et al. [42] explored EEG-based functional 

connectivity and coherence metrics to improve the detection of Alzheimer’s disease and mental workload 

states, respectively. The integration of explainable AI (XAI) has also become increasingly prevalent, as seen 

in Wong et al. [48] who employed a CNN-Transformer-MLP model for seizure detection and used DeepSHAP 

to enhance interpretability. 

In affective neuroscience and applied settings, studies such as Jung et al. [38] and Wąsikowska [39] have 

used EEG to assess emotional responses to hospital architecture and advertising stimuli, respectively. 

Meanwhile, Ahmed et al. [41], Khayretdinova et al. [43], and Dahiya et al. [50] have applied deep learning 

frameworks (including LSTM, DCNN, and capsule networks) to classify psychiatric conditions, predict brain 

sex, and enhance emotion recognition, often with accuracy rates exceeding 90%. EEG's utility has also 

extended into social and developmental neuroscience. Grootjans et al. [44] employed hyperscanning to 

investigate inter-brain synchrony during social interaction, while Catania et al. [49] analyzed microstate 

dynamics in psychogenic non-epileptic seizures (PNES). 

Finally, innovative applications such as those by Yousaf et al. [45] and Byeon et al. [52] illustrate the 

incorporation of EEG in driver safety systems and epileptic detection using hybrid feature selection models. 

Studies like Colafiglio et al. [53] show that motivational states can be classified using high-density EEG, even 

under conditions of mental imagery. Collectively, these findings underscore a vibrant evolution in EEG 

research, marked by advances in signal acquisition, interpretability, and cross-disciplinary integration (paving 

the way for more robust, trustworthy, and clinically impactful neurotechnological tools). 

 

4. CHALLENGES AND FUTURE DIRECTIONS 

4.1. Challenges 

Although EEG research in neuroscience has progressed rapidly, its full integration into clinical and real-

world applications remains hindered by persistent challenges. These obstacles encompass technical 

complexities, methodological inconsistencies, and regulatory gaps, all of which must be systematically 

resolved to enhance the reliability, generalizability, and ethical use of EEG-based systems. One major technical 

hurdle is the substantial variability observed both between and within individuals, driven by factors such as 

inconsistent electrode positioning, anatomical differences, fluctuating physiological conditions, and variations 

in recording equipment. While recent machine learning approaches have achieved high accuracy in specific 

contexts, their lack of standardization and cross-site validation limits broader applicability. Standardized 

acquisition protocols and harmonized preprocessing pipelines are urgently needed to improve reproducibility 

and interoperability across studies. 

Signal artifacts remain a persistent problem, especially in real-world or mobile EEG settings. Despite 

using advanced cleaning techniques such as ICA and filtering, EEG is still highly susceptible to contamination 

from non-neural sources like muscle movements and eye blinks. These challenges are magnified in wearable 

systems or naturalistic studies, where movement is difficult to control. To overcome this, future systems must 

integrate real-time adaptive artifact rejection and potentially incorporate multi-sensor fusion (such as EEG-

EMG) to enhance signal quality. At the same time, EEG's strength in temporal resolution is offset by its limited 

spatial resolution, particularly in accessing subcortical brain activity. While source localization and multimodal 

integration (e.g., EEG-fMRI, EEG-tNIRS) offer improvements, their cost and complexity restrict clinical use, 

demanding development of more accessible and affordable multimodal EEG solutions. 

Beyond technical hurdles, interpretability of AI models remains a significant barrier to clinical adoption. 

Deep learning systems for seizure detection and psychiatric diagnosis have shown impressive performance but 

are often viewed as “black boxes” by clinicians. Although explainable AI (XAI) methods such as DeepSHAP 

have been proposed to address this, current tools lack validation in clinical workflows. Effective translation 

will require clinician-in-the-loop systems and domain-specific interpretability strategies to make AI outputs 

transparent and clinically meaningful. Furthermore, the field is constrained by limited and demographically 

narrow datasets, which hampers model generalizability. Existing studies often rely on small, homogeneous 

samples, underlining the urgent need for large, diverse, and well-annotated EEG repositories that can support 

equitable and robust model training. 
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Lastly, the ethical, legal, and regulatory dimensions of EEG-AI systems are increasingly pressing. As 

applications expand into domains such as driver attention monitoring and consumer neurotechnology, 

challenges around data privacy, informed consent, algorithmic bias, and ownership become more complex. 

The lack of mature regulatory standards for AI-integrated EEG systems exacerbates these risks. To ensure the 

safe and responsible deployment of EEG technologies, a multidisciplinary approach involving neuroscientists, 

clinicians, ethicists, technologists, and policymakers is essential. Such collaboration is critical to building 

comprehensive, forward-thinking frameworks that balance innovation with safety, transparency, and social 

accountability. 

 

4.2. Future Directions 

To overcome the complex challenges inherent in EEG-based neuroscience, upcoming research efforts 

should focus on designing hybrid multimodal systems that combine EEG with synergistic technologies like 

functional near-infrared spectroscopy (fNIRS), eye-tracking, or motion sensing devices. These combinations 

enhance contextual interpretation and signal reliability, especially in real-world or mobile settings. 

Furthermore, the adoption of edge computing and low-latency signal processing enables real-time EEG 

analysis on embedded platforms, supporting responsive applications like seizure monitoring, brain-computer 

interfaces (BCIs), and adaptive neurofeedback without reliance on cloud-based infrastructure. 

Federated learning presents another promising avenue to overcome data sharing and privacy limitations. 

By allowing decentralized model training across multiple institutions without exposing raw data, federated 

learning facilitates the development of robust and generalizable EEG models. In parallel, future EEG systems 

must embrace personalization, where models are tailored to individual users' neurophysiological profiles. 

Techniques such as transfer learning and adaptive calibration can significantly improve prediction accuracy, 

particularly in dynamic environments where cognitive states fluctuate rapidly. 

Lastly, the field must reinforce its commitment to explainability, reproducibility, and ethical standards. 

Explainable AI (XAI) frameworks should be refined to generate outputs interpretable by clinicians and aligned 

with real-world medical decisions. Co-designing EEG technologies with healthcare professionals, validating 

systems across diverse populations, and publishing open-source data and code are essential steps to foster trust 

and accelerate clinical translation. Through these strategies, EEG research can evolve into a scalable and 

ethically sound foundation for next-generation neurotechnological applications. 

 

5. CONCLUSIONS 

Electroencephalography (EEG) has undergone remarkable development in recent years, solidifying its 

role as a versatile tool in neuroscience research and clinical applications. The incorporation of cutting-edge 

signal processing methods (including deep learning, explainable artificial intelligence, and multimodal 

integration) has greatly expanded EEG’s range of applications, from diagnosing neurological conditions to 

monitoring emotional and cognitive states, as well as facilitating interaction between humans and 

computational systems. The studies reviewed between 2021 and 2025 demonstrate how EEG continues to 

evolve from a diagnostic instrument into a dynamic platform for real-time, individualized brain assessment and 

intervention. However, this progress is accompanied by several enduring challenges. Technical issues such as 

signal variability, artifact contamination, and limited spatial resolution persist, particularly in mobile and real-

world settings. Methodologically, the reliance on non-standardized protocols and limited datasets undermines 

model generalizability. Moreover, the complexity and opacity of AI-driven EEG systems raise critical concerns 

regarding clinical interpretability and ethical deployment. The lack of demographic diversity in datasets and 

underdeveloped regulatory frameworks further complicate the translation of EEG innovations into scalable and 

trustworthy applications. 

To navigate these challenges, future EEG research must adopt integrated strategies. This includes the 

development of hybrid systems that combine EEG with modalities like fNIRS or eye-tracking, the use of edge 

computing for low-latency processing, and the implementation of federated learning to preserve data privacy. 

Personalization of EEG models and co-design with clinicians will also be essential to enhance accuracy, 

acceptance, and clinical relevance. Additionally, rigorous efforts must be made to improve explainability, 

reproducibility, and ethical transparency. In sum, EEG stands at the intersection of neuroscience, engineering, 

and artificial intelligence. With sustained interdisciplinary collaboration and commitment to addressing its 

current limitations, EEG is poised to become a cornerstone of next-generation neurotechnology (offering 

scalable, real-time, and ethically aligned solutions for brain health, cognitive research, and human 

augmentation). 
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