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VERTEX

Electroencephalography (EEG) is a key neurotechnology that enables non-
invasive, high-temporal resolution monitoring of brain activity. This review
examines recent advancements in EEG-based neuroscience from 2021 to
2025, with a focus on applications in neurodegenerative disease diagnosis,
cognitive assessment, emotion recognition, and brain-computer interface
(BCI) development. Twenty peer-reviewed studies were selected using
predefined inclusion criteria, emphasizing the use of machine learning on
EEG data. Each study was assessed based on EEG settings, feature extraction,
classification models, and outcomes. Emerging trends show increased
adoption of advanced computational techniques such as deep learning, capsule
networks, and explainable Al for tasks like seizure prediction and psychiatric
classification. Applications have expanded to real-world domains including
neuromarketing, emotion-aware architecture, and driver alertness systems.
However, methodological inconsistencies (ranging from varied preprocessing
protocols to inconsistent performance metrics) pose significant challenges to
reproducibility and real-world deployment. Technical limitations such as
inter-subject variability, low spatial resolution, and artifact contamination
were found to negatively impact model accuracy and generalizability.
Moreover, most studies lacked transparency regarding bias mitigation, dataset
diversity, and ethical safeguards such as data privacy and model
interpretability. Future EEG research must integrate multimodal data (e.g.,
EEG-fNIRS), embrace real-time edge processing, adopt federated learning
frameworks, and prioritize personalized, explainable models. Greater
emphasis on reproducibility and ethical standards is essential for the clinical
translation of EEG-based technologies. This review highlights EEG’s
expanding role in neuroscience and emphasizes the need for rigorous,
ethically grounded innovation.
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1. INTRODUCTION

Electroencephalography (EEG) has emerged as a pivotal neurotechnology, offering non-invasive, high-
temporal resolution monitoring of brain activity that is foundational to both clinical neurophysiology and
cognitive neuroscience research. Since its invention by Hans Berger in the early 20th century, EEG has evolved
from analog paper-based recordings to high-density digital systems integrated with sophisticated
computational tools [1]. Its ability to capture real-time electrophysiological signals makes EEG uniquely suited
for investigating dynamic brain states, such as sensory processing, cognition, sleep cycles, and epileptic events
[2][3]. Over the past two decades, significant advances have transformed EEG into a more adaptive and
application-oriented modality.

The adoption of machine learning (particularly deep learning, capsule networks, and explainable AI) has
enhanced EEG’s potential for predictive modeling in domains such as seizure detection, psychiatric
classification, and neurorchabilitation [4]. Additionally, the development of wearable EEG systems, dry
electrodes, and wireless telemetry has increased the feasibility of mobile EEG applications in naturalistic
environments [5]. Multimodal combinations, such as EEG-fNIRS or EEG-eye-tracking integration, further
enrich the interpretability of brain signals by contextualizing electrical activity with hemodynamic or
behavioral data [6]. These innovations have been complemented by analytical methods including time-
frequency decomposition, source localization, and graph-theoretic network modeling [7].

Despite this progress, the field remains fragmented. Many claims of technological breakthroughs rely on
studies with limited sample sizes, non-standardized EEG protocols, or insufficient validation across
populations. Persistent issues such as motion artifacts, low spatial resolution, and inter-subject variability
continue to hinder reproducibility and clinical translation [8]. Moreover, while Al-driven approaches offer
promise, they also introduce concerns regarding model interpretability, fairness, and data privacy (issues often
underexplored in existing literature) [9][10].

Although several review papers have addressed the evolution of EEG in isolation or within specific
subdomains, few have critically synthesized recent trends from an interdisciplinary, systems-level perspective.
This review aims to fill that gap by providing a focused evaluation of EEG-based neuroscience studies
published between 2021 and 2025. Specifically, we examine how recent developments in Al integration,
multimodal systems, and real-world applications are reshaping the landscape of EEG research. By analyzing
the methodological rigor, translational barriers, and ethical implications of contemporary EEG innovation, this
review offers a timely roadmap for advancing EEG toward scalable, real-time, and ethically aligned
neurotechnologies.

2. FUNDAMENTALS OF EEG TECHNOLOGIES

EEG measures fluctuations in electrical potentials generated by ionic currents between neurons, requiring
highly sensitive systems due to its microvolt-range signals. Accurate interpretation hinges on minimizing noise
and artifacts, making a solid grasp of EEG’s physiological basis essential (particularly for applications in
cognitive research and clinical diagnosis of conditions like epilepsy, dementia, and sleep disorders) [11]. Signal
quality is influenced by multiple technical factors, including correct electrode placement (e.g., 10—20 system),
electrode type (wet or dry), and preprocessing steps such as amplification, filtering, and segmentation. EEG
signals span characteristic frequency bands, from delta (deep sleep) to gamma (focused attention), which reflect
mental and physiological states. Proper interpretation not only requires knowledge of these bands but also
advanced analytical methods like time-frequency analysis, functional connectivity, and machine learning for
pattern recognition [12].

2.1. Electrode Placement

EEG electrode placement is a critical factor in ensuring the quality and accuracy of brain activity
recordings. To achieve consistent and reproducible results across individuals and studies, electrodes must be
placed systematically on the scalp. The most widely adopted method is the international 10-20 system, which
organizes electrodes based on anatomical landmarks such as the nasion, inion, and preauricular points. This
system divides the scalp into proportional distances (10% and 20% intervals) ensuring standardization across
clinical and research settings. Electrode labels like “F” for the frontal lobe and “z” for the midline enable
precise identification of electrode positions (e.g., Fz, F3, F4), supporting consistent localization of brain regions
involved in various cognitive and neurological functions [13].

Beyond the standard 10-20 configuration (Figure 1), modern EEG systems increasingly employ high-
density electrode arrays, consisting of up to 128 or 256 electrodes. These advanced setups offer enhanced
spatial resolution, making them particularly valuable in clinical diagnostics and neuroscience research. High-
density arrays allow for more accurate mapping of localized brain activity, which is essential for applications
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such as identifying epileptic foci, conducting functional brain imaging, and developing brain-computer
interfaces (BClIs). The added electrodes capture subtle electrical variations across smaller cortical regions,
enabling researchers and clinicians to observe more granular neural dynamics and improve the precision of
data interpretation in both experimental and clinical environments [14].

VERTEX

Inion

(a) Left side of head (b) Top of head
Figure 1. EEG electrode 10-20 system [15]

Electrode types and materials also play an important role in the placement and effectiveness of EEG can
be seen in Figure 2. The electrodes are typically made of materials like silver/silver chloride (Ag/AgCl) or
gold, which have excellent conductivity properties, allowing for efficient detection of the small electrical
signals emitted by the brain. More modern EEG systems may also use dry electrodes, which eliminate the need
for conductive gel or paste, making them more convenient for patients, especially in long-term monitoring or
ambulatory settings. These dry electrodes are often designed for improved comfort and easier placement, as
they require less preparation time [16].

(a) AgCl wet EEG (b) Gold wet EEG (c) AgCl dry EEG (d) Gold dry EEG

electrode electrode electrode electrode
Figure 2. EEG electrode types and materials [17][18]

Building upon standardized placement and material innovations, EEG headsets have emerged as practical,
user-friendly tools for recording brain activity in both research and applied settings can be seen in Figure 3.
These headsets integrate electrodes (either wet or dry) into wearable, often wireless designs that simplify the
setup process and improve usability, especially in non-clinical or mobile environments. EEG headsets typically
position sensors according to the 10-20 system or its simplified variants, allowing consistent monitoring of
cognitive and emotional states. Advances in miniaturized electronics, Bluetooth or Wi-Fi transmission, and
onboard signal processing have enabled real-time EEG monitoring with relatively high fidelity [19].

(a) "BESDATA" EEG (b) “Emotiv”’ EEG (c) “Muse” EEG (d) “OpenBCI” EEG
headset headset headset headset
Figure 3. EEG headsets [17],[20]-[22]
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Commercially available headsets such as Emotiv, Muse, and OpenBCI exemplify this trend, offering
platforms for applications ranging from attention tracking and neurofeedback training to mental workload
estimation and brain-computer interface (BCI) development. Although EEG headsets still face limitations in
spatial resolution and signal noise compared to high-density systems, their portability, comfort, and
accessibility continue to expand the reach of EEG technology into daily life, education, mental health, and
consumer neurotechnology domains [23].

2.2. Brainwave Frequency Bands

EEG (electroencephalography) signals are categorised based on frequency bands that reflect various
forms of electrical oscillation activity in the brain. This division is not only technical in nature, but also highly
significant physiologically, as each frequency band is closely related to states of consciousness, cognitive
activity, and specific emotional or behavioural states. The five main frequency bands commonly analysed in
EEG include delta, theta, alpha, beta, and gamma waves can be seen in Table 1. This classification of EEG
frequency bands provides an important framework for understanding the dynamics of human brain activity.
Not only used in neuroscience research, EEG spectral analysis also serves as an important diagnostic tool in
detecting epilepsy (where abnormal wave patterns may appear in specific bands), sleep disorders,
consciousness disorders, and evaluating brain function during anaesthesia or coma. The ability to isolate these
frequency bands enables a more precise approach in neuromonitoring and EEG-based neurofeedback
interventions.

Table 1. EEG frequency bands [24]
Brainwave  Frequency Physiological State Clinical Characteristics & Significance
o High amplitude and lowest frequency.
e Dominates during slow-wave sleep.
e Presence of delta while awake may indicate diffuse or
localized brain dysfunction

Deep sleep (non-REM
Delta 0.5-4Hz stages 3 & 4),
unconsciousness

Light sleep, drowsiness, o Linked to internalized mental activity
Theta 4-8Hz meditation, wakefulness e Associated with memory encoding and retrieval in adults.
in children e Common in children during wakefulness.

e Most prominent over occipital and parietal lobes.

Alpha 8—-13 Hz Relaxed, eyeiclosed but Decrelzjises with attention opr cogniti\l/je demand.
awake o Increases during mental relaxation or "wakeful rest".

e Found predominantly in frontal and central regions.

B Active thinking, problem- e Increased beta may reflect stress or anxiety but also
eta 13-30 Hz . o -
solving, alertness cognitive and motor readiness.
e Dominates during focused mental activity.
o Highest frequency band.
High-level cognitive e Important in sensory integration, working memory, and
Gamma 30-100 Hz processing, attention, conscious perception.
consciousness e Detection is challenging due to low amplitude and

susceptibility to artifacts.

2.3. Amplification and Signal Processing in EEG Systems

Electroencephalographic (EEG) signals are inherently minute, typically ranging between 10 and 100
microvolts, which makes them vulnerable to distortion and interference from both physiological and
environmental sources. The raw voltage fluctuations recorded by scalp electrodes are therefore too weak to be
analyzed directly. To render these signals usable, the first essential step is amplification. Modern EEG systems
utilize high-gain, low-noise differential amplifiers that are specifically designed to enhance the signal’s
strength while maintaining signal integrity. These amplifiers not only magnify the neural signals but also
optimize parameters such as input impedance and common-mode rejection ratio (CMRR), allowing them to
effectively suppress external noise (particularly power line interference and other common-mode signals)
without introducing additional artifacts or signal degradation [25].

Despite amplification, EEG signals remain susceptible to contamination from various artifacts.
Physiological artifacts such as eye blinks, eye movements (electrooculogram, EOG), facial muscle activity
(EMQ), and cardiac signals (ECG) are common, particularly in awake subjects. Environmental noise, such as
electromagnetic interference from nearby electronic devices or fluctuations due to poor electrode contact, can
further obscure the desired neural activity. To address these challenges, signal preprocessing techniques are
applied. Most systems integrate band-pass filters to retain frequencies of interest (e.g., 0.5-100 Hz) while
attenuating irrelevant low- or high-frequency noise. Additionally, notch filters are employed to eliminate 50/60
Hz line noise. For more sophisticated noise sources, EEG systems often rely on computational approaches such
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as Independent Component Analysis (ICA), Principal Component Analysis (PCA), or regression-based artifact
removal algorithms to identify and subtract contaminating components [26].

Following amplification and filtering, the cleaned EEG signal must be converted into a digital format for
storage, visualization, and computational analysis. This process is conducted using Analog-to-Digital
Converters (ADCs), which sample the analog waveform at regular intervals (commonly 250 Hz to 1000 Hz or
higher) and convert it into a discrete numerical representation. High-resolution ADCs, typically operating at
16- to 24-bit resolution, are essential to preserve the fidelity of the signal during digitization. Once in digital
form, the EEG data can be processed using various software platforms for real-time monitoring, feature
extraction (e.g., power spectral density, event-related potentials), machine learning classification, and long-
term archival [27] can be seen in Figure 4.

Analog-to-

EEG Signal Signal Artifact Digital Digital Signal

Acquisition Amplification Rejection Conversion Processing

(ADC)

Figure 4. Signal processing in EEG system

2.4. Pattern Extraction and Interpretation

Pattern extraction and interpretation is a critical phase that follows the digitization of raw EEG signals,
enabling the transformation of complex biosignals into meaningful representations of brain activity. This
process is fundamental in both clinical neurophysiology and cognitive neuroscience, as it facilitates the
identification of underlying neural mechanisms and the detection of potential pathological alterations. One of
the primary approaches in this stage is spectral analysis, which decomposes EEG signals into constituent
frequency bands (delta, theta, alpha, beta, and gamma) each corresponding to specific brain states such as sleep,
relaxation, attention, or high-level cognitive activity [28]. Methods like Fast Fourier Transform (FFT) and
Welch’s method are commonly used to quantify the power distribution within these bands, allowing researchers
to assess cognitive states such as alertness, mental workload, or drowsiness [29].

To gain a more dynamic understanding, time-frequency analysis techniques such as Short-Time Fourier
Transform (STFT), Wavelet Transform (WT), and Hilbert-Huang Transform (HHT) are employed. These
methods enable tracking of how spectral content evolves over time, which is particularly valuable for detecting
transient events like epileptic discharges or changes related to cognitive tasks [30]. Beyond frequency-based
analyses, a broad array of EEG features is extracted, including statistical metrics (e.g., mean, variance,
entropy), connectivity measures (e.g., coherence, phase-locking value), nonlinear characteristics (e.g., fractal
dimension, Lyapunov exponent), and hemispheric asymmetry indices.

These features serve as input for machine learning algorithms such as SVM, Random Forests, and deep
learning models like CNNs. Such models have shown high accuracy in classifying mental states, detecting
neurological disorders such as epilepsy, and identifying demographic traits like age or sex from EEG patterns
[31]. Moreover, machine learning extends the interpretative power of EEG by detecting subtle, high-
dimensional patterns that are often imperceptible to manual analysis. With the integration of explainable Al
(XAI) approaches, researchers can trace model predictions back to specific EEG features or brain regions,
enhancing transparency and clinical applicability [32][33].

3. ADVANCEMENTS AND APPLICATION OF EEG

In recent years, the application of electroencephalography (EEG) has advanced rapidly across various
fields, including neuroengineering, clinical diagnostics, and brain-computer interface (BCI) systems. Between
2021 and 2025 (Table 2), research in EEG has increasingly employed sophisticated computational approaches
such as deep learning, self-supervised models, and hybrid frameworks to address complex tasks like epileptic
seizure prediction, emotion recognition, and motor activity classification. To provide a comprehensive yet
focused overview of these developments, a targeted literature review was conducted, covering studies
published between January 2021 and May 2025. The search was performed across five major academic
databases: IEEE Xplore, ScienceDirect, and SpringerLink. Boolean keyword combinations used in the search
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strategy included terms such as (“electroencephalography” OR “EEG”) AND (“deep learning” OR “machine
learning” OR “AI”) AND (“neurological disorder” OR “cognitive assessment” OR “mental workload” OR
“human-computer interaction”).

Inclusion criteria were defined to select only original, peer-reviewed research articles that utilized human
EEG data and applied machine learning or advanced signal processing methods with clearly reported
performance outcomes. Studies were excluded if they were reviews, editorials, animal-based research, or
lacked methodological transparency. A total of 20 articles met the eligibility criteria and were included in the
analysis. For each study, key information was extracted, including the names of the authors, research
objectives, EEG acquisition methods (e.g., clinical vs. wearable systems), types of features used, classification
approaches, and main findings. Although this review was conducted using a narrative approach, the selection
and appraisal process followed a structured logic aligned with best practices for scoping reviews. This
methodology aims to ensure transparency, reduce bias, and enhance the relevance of the synthesized insights
presented in this paper.

Table 2. EEG research in neuroscience

Authors &

Ref Year Objective EEG Type EEG Data Features Main Findings
Delta positively correlated
To investigate the Delta (1-4 Hz), Theta W{th FOGQ; Alpha .
: negatively correlated with
correlation between . (4-8 Hz), Alpha (8-13 . o
P Resting-state . FOGQ; Theta positively and
Miladinovi¢ et EEG power bands and o2 Hz), Beta (13-30 Hz); .
[34] . R Quantitative EEG . Beta negatively correlated
al., 2021 Parkinson's disease 21 electrodes; 256 Hz . )
. (qEEG) L . with UPDRS-III; No
(PD) motor deficit sampling; PSD via . .
scales Welch’s method correlation with H&Y,
BERG, MPAS, 6MWT,
TUG
To improve carly Variance, skewness,
Alzheimer’s detection 20-channel EEG, kurtosis, Shannon Cgmblnlng Hjorth features
Safi et al., . . entropy, sure entropy, with DWT and KNN gave
[35] using EEG signals 10-20 system, 200 . .
2021 with Hiorth Hz Hjorth parameters; used the best accuracy at 97.64
J DWT, EMD, and band percent
parameters ;
filtering
To explore EEG band Resting-state EEG Hz sampling rate, intra- )
. : . . topology; notably reduced
. coupling using with auditory electrode Phase- -
Molina et al., R . . . . small-worldness during 4.8
[36] complex network stimuli (white noise Amplitude Coupling . )
2022 . . X Hz stimulus; small-
analysis in dyslexia modulated at 4.8, (PAC) using .
. . . worldness metric enabled
diagnosis 16, 40 Hz) Modulation Index (MI), . . .
classification with 73%
bands: Delta to Gamma
accuracy
FC analysis & channel . Better than standard FC
. . . 23 bipolar channels, . .
Gunawardena selection using Resting-state, methods; key changes in
[37] X . . Isomap-GPLVM, kernel s ;
etal., 2023 manifold learning for bipolar montage similarity matrix occipital-parietal & fronto-
AD detection Y parietal connectivity for AD
To assess emotional Biophilic design increases
. . Power of theta, alpha, .
38] Jung et al., and.bralp responses to Emotiv Epoc X beta, gamma bands in relaxation and reduces
2023 biophilic hospital (14-channel EEG) > . . arousal; >90% ML
. multiple brain regions . .
designs classification accuracy
- Frontal asymmetry, Emotionally engaging ads
Wasikowska, To stu@y advemgmg 19-channel EEG GSR, ECG, ICA- are better remembered; EEG
[39] effectiveness using (Contec KT88- . . . ;
2023 : . cleaned EEG signals, Z- helps identify scenes with
EEG and biometrics 2400) . .
score averaging highest engagement.
Gamma and beta bands gave
To analyze EEG sub- 32-channel EEG, 512 highest classification
1 1 0/
Khalid ef al., bands for }mp?oved Resting-state EEG Hz sampling, PSD from accuracy (up to 98.6%);
[40] 2024 Parkinson’s Disease (UCSD dataset) delta, theta, alpha, mu, GRU outperformed SVM
detection using GRU beta, gamma bands and MCNN;; alpha, beta, and
and PSD features using Welch method gamma showed significant
discriminatory power
CNN-LSTM, LSTM, Bi-
Classify psychiatric 19 channels, 945 LSTM, KNN, and ANN
[41] Ahmed et al., disorders using EEG Resting-state EEG Su?ezcntlsr’e]:zgs:sdgc ach]et\;eggh;%h 2?22::)0 liis (up
2024 and deep learning (eyes closed) =P

models

frequency bands, 1140
total features

classifying specific
disorders like acute stress
and adjustment disorder
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Ref Aug‘:;: & Objective EEG Type EEG Data Features Main Findings
Evaluate mental Combining coherence and
Shafiei et al., workload using Coherence, wPLI across wPLI improves prediction
[42] 2024 coherence and wPLI 124-channel EEG Brodmann areas accuracy of mental
features workload domains.
DCNN achieved 84.1%
. Predict brain sex using . 4298 qEEG features balanced accuracy and 89%
[43] Khayretdinova EEG and interpretable Resting-state EEG (PSD, complexity, ROC-AUC; left fronto-
etal., 2024 (EO & EC) g .
ML models connectivity) central & parietal
connectivity key.
. can study social Lab-based, ERP, ERO, theta power, Y S
Grootjans et X A . . modulated by context; inter-
[44] interaction in hyperscanning, alpha/beta power, inter- .
al., 2024 . . brain synchrony reflects
developmental mobile EEG brain synchrony . .
. relationship closeness and
neuroscience
engagement.
To enhance driver 250 Hz sampling, 3 . o
Yousaf et al., attention and road EMOTIV EPOC+ cognitive states, I[CA PPO model achieved 99.3%
[45] . . accuracy and outperformed
2024 safety using EEG- (14-channel) preprocessing, DON in classifying attention
informed DRL models standardized features &
I R —
Cataldo et al., Multiscale Fuzzy C%lmcal EEG band-pass filtered 0.5— short scales, higher at long
[46] (resting-state, eyes : . scales. AD > HC in
2024 Entropy (MFE) to 30 Hz; analyzed in . .
L closed) delta/theta; AD < HC in
distinguish AD from delta, theta, alpha, beta alpha/beta bands
healthy controls. bands p ’
Sex affects emotion EEG
[47] Sheoran et al., Asses_s sex impact on 62-channcl EEG PSD (HHT), attention patterns: ferrl.a}es (left),
2025 emotion recognition map males (right); improves
model accuracy
To develop an 1-s single-channel Proposed CNN-
interpretable deep segments; 22 bipolar Transformer-MLP model
Wong et al., learning model for Scalp EEG (TUSZ, channels; 250 Hz achieved AUC O'?S (TUS.Z)
[48] : aet 101 neis and 0.82 (RMH); XAl via
2025 seizure detection using RMH datasets) sampling; bandpass . .
DeepSHAP identified key
channel-level EEG (0.1-60 Hz) and notch .
- channels with 0.59
annotations. filter. . S
localization sensitivity.
To study brain activity 1000 Hz, filtered 2—40 Microstate C (linked to
[49] Catania et al., changes during PNES Scalp EEG (21 Hz, 4 microstates (A— DMN) increases during rest,
2025 events and rest using channels) D), analyzed duration, decreases during PNES
EEG microstates coverage, GFP events.
To develop an .
attention-based Differential entropy ;\]{t—C@pNet u(simg EEG-
. capsule network (At- across five bands (NIRS improved recognition
Dahiya et al., . 62-channel EEG . . . by 1.52-14.35%,
[50] CapNet) using EEG- statistical metrics, PSD; . D
2025 (NeuroScan) outperforming existing
tNIRS data for mapped to -
L . . models in accuracy and
accurate clinical spatiotemporal matrices . .
. o computational efficiency
emotion recognition
Review BEG time- Midfrontal theta reﬂe_cts
Morales et al., . e Theta/delta power, control development; time-
[51] frequency in cognitive ~ Event-related EEG
2025 control development ITPS, ICPS frequency reveals age
P effects missed by ERP.
To dete(_;t epilep t.l ¢ PSI-based topological GA-PSO improved
EEG using a brain ) .
[52] Byeon et al., stimulation model 19-channel EEG features, GA-PSO for classification accuracy up to
2025 X .. feature selection, sub- 91.3%; cross-band features
with optimized - .
band decomposition outperform single-band.
features
To CI?SSIfy 12 High-density EEG 512 Hz sampling; 12 Lo .
motivational states ) A . Perception yielded higher
. . (128-channels); motivational states; . i
53] Colafiglio et using EEG apd evaluated with 14 perception vs imagery: accuracy than imagery; 18
al., 2025 machine learning, ’ channels slightly better; best

under perception and
imagery conditions

and 18 channel
subset

ERP-based features;
LOSO validation

accuracy 88%

Electroencephalography (EEG) continues to serve as a cornerstone in neuroscience research, offering

valuable insights into brain activity across a spectrum of neurological, psychiatric, cognitive, and affective
domains. Recent studies have increasingly leveraged EEG to investigate neurodegenerative diseases. For
instance, Miladinovi¢ et al. [34] and Khalid et al. [40] demonstrated that specific EEG frequency bands
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(particularly delta, theta, beta, and gamma) hold strong diagnostic potential for Parkinson’s disease, while
Cataldo et al. [46] employed multiscale fuzzy entropy analysis to differentiate Alzheimer’s patients from
healthy controls. Safi et al. [35] further enhanced early Alzheimer’s detection by integrating Hjorth parameters
and wavelet-based features, achieving impressive classification accuracy.

Parallel to clinical diagnostics, EEG is gaining ground in cognitive neuroscience and learning disorders.
Molina et al. [36] utilized phase-amplitude coupling networks to reveal altered topologies in children with
dyslexia. Additionally, Gunawardena et al. [37] and Shafiei et al. [42] explored EEG-based functional
connectivity and coherence metrics to improve the detection of Alzheimer’s disease and mental workload
states, respectively. The integration of explainable Al (XAI) has also become increasingly prevalent, as seen
in Wong et al. [48] who employed a CNN-Transformer-MLP model for seizure detection and used DeepSHAP
to enhance interpretability.

In affective neuroscience and applied settings, studies such as Jung et al. [38] and Wasikowska [39] have
used EEG to assess emotional responses to hospital architecture and advertising stimuli, respectively.
Meanwhile, Ahmed et al. [41], Khayretdinova ef al. [43], and Dahiya et al. [SO] have applied deep learning
frameworks (including LSTM, DCNN, and capsule networks) to classify psychiatric conditions, predict brain
sex, and enhance emotion recognition, often with accuracy rates exceeding 90%. EEG's utility has also
extended into social and developmental neuroscience. Grootjans et al. [44] employed hyperscanning to
investigate inter-brain synchrony during social interaction, while Catania et al. [49] analyzed microstate
dynamics in psychogenic non-epileptic seizures (PNES).

Finally, innovative applications such as those by Yousaf ef al. [45] and Byeon et al. [52] illustrate the
incorporation of EEG in driver safety systems and epileptic detection using hybrid feature selection models.
Studies like Colafiglio ef al. [53] show that motivational states can be classified using high-density EEG, even
under conditions of mental imagery. Collectively, these findings underscore a vibrant evolution in EEG
research, marked by advances in signal acquisition, interpretability, and cross-disciplinary integration (paving
the way for more robust, trustworthy, and clinically impactful neurotechnological tools).

4. CHALLENGES AND FUTURE DIRECTIONS
4.1. Challenges

Although EEG research in neuroscience has progressed rapidly, its full integration into clinical and real-
world applications remains hindered by persistent challenges. These obstacles encompass technical
complexities, methodological inconsistencies, and regulatory gaps, all of which must be systematically
resolved to enhance the reliability, generalizability, and ethical use of EEG-based systems. One major technical
hurdle is the substantial variability observed both between and within individuals, driven by factors such as
inconsistent electrode positioning, anatomical differences, fluctuating physiological conditions, and variations
in recording equipment. While recent machine learning approaches have achieved high accuracy in specific
contexts, their lack of standardization and cross-site validation limits broader applicability. Standardized
acquisition protocols and harmonized preprocessing pipelines are urgently needed to improve reproducibility
and interoperability across studies.

Signal artifacts remain a persistent problem, especially in real-world or mobile EEG settings. Despite
using advanced cleaning techniques such as ICA and filtering, EEG is still highly susceptible to contamination
from non-neural sources like muscle movements and eye blinks. These challenges are magnified in wearable
systems or naturalistic studies, where movement is difficult to control. To overcome this, future systems must
integrate real-time adaptive artifact rejection and potentially incorporate multi-sensor fusion (such as EEG-
EMG) to enhance signal quality. At the same time, EEG's strength in temporal resolution is offset by its limited
spatial resolution, particularly in accessing subcortical brain activity. While source localization and multimodal
integration (e.g., EEG-fMRI, EEG-tNIRS) offer improvements, their cost and complexity restrict clinical use,
demanding development of more accessible and affordable multimodal EEG solutions.

Beyond technical hurdles, interpretability of AI models remains a significant barrier to clinical adoption.
Deep learning systems for seizure detection and psychiatric diagnosis have shown impressive performance but
are often viewed as “black boxes” by clinicians. Although explainable AI (XAI) methods such as DeepSHAP
have been proposed to address this, current tools lack validation in clinical workflows. Effective translation
will require clinician-in-the-loop systems and domain-specific interpretability strategies to make Al outputs
transparent and clinically meaningful. Furthermore, the field is constrained by limited and demographically
narrow datasets, which hampers model generalizability. Existing studies often rely on small, homogeneous
samples, underlining the urgent need for large, diverse, and well-annotated EEG repositories that can support
equitable and robust model training.
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Lastly, the ethical, legal, and regulatory dimensions of EEG-AI systems are increasingly pressing. As
applications expand into domains such as driver attention monitoring and consumer neurotechnology,
challenges around data privacy, informed consent, algorithmic bias, and ownership become more complex.
The lack of mature regulatory standards for Al-integrated EEG systems exacerbates these risks. To ensure the
safe and responsible deployment of EEG technologies, a multidisciplinary approach involving neuroscientists,
clinicians, ethicists, technologists, and policymakers is essential. Such collaboration is critical to building
comprehensive, forward-thinking frameworks that balance innovation with safety, transparency, and social
accountability.

4.2. Future Directions

To overcome the complex challenges inherent in EEG-based neuroscience, upcoming research efforts
should focus on designing hybrid multimodal systems that combine EEG with synergistic technologies like
functional near-infrared spectroscopy (fNIRS), eye-tracking, or motion sensing devices. These combinations
enhance contextual interpretation and signal reliability, especially in real-world or mobile settings.
Furthermore, the adoption of edge computing and low-latency signal processing enables real-time EEG
analysis on embedded platforms, supporting responsive applications like seizure monitoring, brain-computer
interfaces (BCls), and adaptive neurofeedback without reliance on cloud-based infrastructure.

Federated learning presents another promising avenue to overcome data sharing and privacy limitations.
By allowing decentralized model training across multiple institutions without exposing raw data, federated
learning facilitates the development of robust and generalizable EEG models. In parallel, future EEG systems
must embrace personalization, where models are tailored to individual users' neurophysiological profiles.
Techniques such as transfer learning and adaptive calibration can significantly improve prediction accuracy,
particularly in dynamic environments where cognitive states fluctuate rapidly.

Lastly, the field must reinforce its commitment to explainability, reproducibility, and ethical standards.
Explainable Al (XAI) frameworks should be refined to generate outputs interpretable by clinicians and aligned
with real-world medical decisions. Co-designing EEG technologies with healthcare professionals, validating
systems across diverse populations, and publishing open-source data and code are essential steps to foster trust
and accelerate clinical translation. Through these strategies, EEG research can evolve into a scalable and
ethically sound foundation for next-generation neurotechnological applications.

5. CONCLUSIONS

Electroencephalography (EEG) has undergone remarkable development in recent years, solidifying its
role as a versatile tool in neuroscience research and clinical applications. The incorporation of cutting-edge
signal processing methods (including deep learning, explainable artificial intelligence, and multimodal
integration) has greatly expanded EEG’s range of applications, from diagnosing neurological conditions to
monitoring emotional and cognitive states, as well as facilitating interaction between humans and
computational systems. The studies reviewed between 2021 and 2025 demonstrate how EEG continues to
evolve from a diagnostic instrument into a dynamic platform for real-time, individualized brain assessment and
intervention. However, this progress is accompanied by several enduring challenges. Technical issues such as
signal variability, artifact contamination, and limited spatial resolution persist, particularly in mobile and real-
world settings. Methodologically, the reliance on non-standardized protocols and limited datasets undermines
model generalizability. Moreover, the complexity and opacity of Al-driven EEG systems raise critical concerns
regarding clinical interpretability and ethical deployment. The lack of demographic diversity in datasets and
underdeveloped regulatory frameworks further complicate the translation of EEG innovations into scalable and
trustworthy applications.

To navigate these challenges, future EEG research must adopt integrated strategies. This includes the
development of hybrid systems that combine EEG with modalities like fNIRS or eye-tracking, the use of edge
computing for low-latency processing, and the implementation of federated learning to preserve data privacy.
Personalization of EEG models and co-design with clinicians will also be essential to enhance accuracy,
acceptance, and clinical relevance. Additionally, rigorous efforts must be made to improve explainability,
reproducibility, and ethical transparency. In sum, EEG stands at the intersection of neuroscience, engineering,
and artificial intelligence. With sustained interdisciplinary collaboration and commitment to addressing its
current limitations, EEG is poised to become a cornerstone of next-generation neurotechnology (offering
scalable, real-time, and ethically aligned solutions for brain health, cognitive research, and human
augmentation).
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