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Sign language recognition plays a critical role in promoting inclusive
education, particularly for deaf children in Indonesia. However, many
existing systems struggle with real-time performance and sensitivity to
lighting variations, limiting their applicability in real-world settings. This
study addresses these issues by optimizing a BISINDO (Bahasa Isyarat
Indonesia) alphabet recognition system using the SSD MobileNetV2
architecture, enhanced with gamma correction as a luminance normalization
technique. The research contribution is the integration of gamma correction
preprocessing with SSD MobileNetV2, tailored for BISINDO and
implemented on a low-cost assistive robot platform. This approach aims to
improve robustness under diverse lighting conditions while maintaining real-
time capability without the use of specialized sensors or wearables. The
proposed method involves data collection, image augmentation, gamma
correction (y = 1.2, 1.5, and 2.0), and training using the SSD MobileNetV2
FPNLite 320x320 model. The dataset consists of 1,820 original images
expanded to 5,096 via augmentation, with 26 BISINDO alphabet classes. The
system was evaluated under indoor and outdoor conditions. Experimental
results showed significant improvements with gamma correction. Indoor
accuracy increased from 94.47% to 97.33%, precision from 91.30% to
95.23%, and recall from 97.87% to 99.57%. Outdoor accuracy improved
from 93.80% to 97.30%, with precision rising from 90.33% to 94.73%, and
recall reaching 100%. In conclusion, the proposed system offers a reliable,
real-time solution for BISINDO recognition in low-resource educational
environments. Future work includes the recognition of two-handed gestures
and integration with natural language processing for enhanced contextual
understanding.
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1. INTRODUCTION

Sign language serves as the primary mode of communication for individuals who are deaf or speech-
impaired [1][2]. In the context of Indonesian language and culture, BISINDO (Bahasa Isyarat Indonesia) plays
a vital role in promoting literacy and language acquisition among children with hearing impairments [3][4].
However, teaching BISINDO particularly at the alphabet levelremains challenging due to a limited number of
qualified instructors, the lack of interactive and adaptive learning media, and the insufficient availability of
affordable assistive technologies tailored to the needs of children with disabilities [5][6]. Computer vision-
based sign language recognition systems have emerged as a promising solution to bridge this gap [7]-[9].
Several studies have employed deep learning architectures such as Convolutional Neural Networks (CNN)
[10]-[12], You Only Look Once (YOLO) [13]-[15], and Faster Region-Based Convolutional Neural Network
(Faster R-CNN) [13]-[15] for sign alphabet classification [19][20]. Although these models demonstrate high
accuracy, they generally require high computational power and often struggle with real-time performance,
making them less suitable for embedded systems such as mobile or child-friendly educational robots.

To address these limitations, this study proposes the use of Single Shot MultiBox Detector (SSD) [21]
integrated with the lightweight MobileNetV2 [22] architecture, enhanced through gamma correction
preprocessing. SSD MobileNetV2 was selected for its balance of speed and accuracy on low-resource devices,
while gamma correction is used to normalize lighting variations that commonly occur in gesture images [23].
This combination is deployed in a low-cost, camera-based educational robot designed to assist BISINDO
alphabet learning in real time, without relying on specialized sensors or wearable devices. The system provides
multimodal feedback, including visual text display, expressive robot movements, and audio output [24]. The
contribution of this research is the development of an adaptive, real-time BISINDO recognition system
optimized through gamma correction and embedded into an assistive educational robot [25]. The system
addresses key challenges in lighting variability and real-time performance while offering a practical, inclusive
learning solution for deaf children [26][27]. Future developments will include support for two-handed gestures
and integration with Natural Language Processing (NLP) to enhance interactive dialogue and contextual
understanding.

2. THEORETICAL FOUNDATION OF SSD MOBILENETV2

SSD MobileNet V2 is an object detection network that combines MobileNet V2 for feature extraction and
the Single Shot Multibox Detector (SSD) for object detection [21]. In Figure 1, the MobileNet-SSD architecture
is depicted, where we introduce gamma-corrected image results. Subsequently, SSD MobileNet V2 is utilized
for object detection and recognition, explicitly focusing on the BISINDO Iletters. MobileNetV2 employs
depthwise separable convolutions, consisting of depthwise convolutions followed by pointwise convolutions
[28]. This design reduces the number of parameters and computations compared to traditional convolutional
layers while still capturing meaningful features. In the SSD MobileNet V2 architecture, the convolutional
layers are a fundamental component responsible for feature extraction from input images. These layers apply
convolution operations to input data, learning hierarchical features at various scales to generate feature maps.
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Figure 1. The architecture of MobileNet-SSD V2 incorporates gamma correction
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This research employed the SSD MobileNet V2 FPNLite 320x320 model based on Table 1. This model
comprises several vital elements, namely SSD (Single Shot Multibox Detector), an object detection architecture
designed to detect objects in an image efficiently. FPNLite (Feature Pyramid Network Lite) is a lightweight
version of the Feature Pyramid Network (FPN) designed to address scale issues in object detection. FPNLite
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aids the model in effectively identifying objects at various resolution levels. The model uses a 320x320 image
resolution as the input. In this case, the input image has dimensions of 320x320 pixels. This resolution can
influence the trade-off between the speed and accuracy of object detection.

3. METHODS

This section outlines the methodological stages of the proposed BISINDO alphabet recognition system
[29](30]. The process is divided into three main phases: (1) Data Preparation, (2) Model Development, and (3)
Testing Pipeline. Each phase is designed to support the development of a real-time, lightweight recognition
system optimized for deployment in assistive educational robots.

3.1. Data Preparation
3.1.1. Dataset Collection

The dataset comprises 1,820 original RGB images representing 26 BISINDO alphabet letters,
demonstrated by a single actor using a Realme 8i smartphone (50 MP) under varying lighting conditions (both
indoor and outdoor) [30]. The camera was positioned at a fixed 70 cm distance and aligned with the chest
height of the subject to ensure consistency [31].

3.1.2. Preprocessing

All images were labeled into 26 distinct classes (A—Z), then resized and cropped to 640%640 pixels using
the Roboflow platform [32][33]. The dataset was split into 90% for training (1,638 images) and 10% for testing
(182 images). This proportion was selected to maximize learning while retaining a small holdout set for
evaluation [34].

3.1.3. Data Augmentation

To improve generalization and simulate real-world variability, four augmentation techniques were
applied: brightness (£25%), exposure (£20%), saturation (+40%), and hue (+30°) [33],[35],[36]. These values
were chosen to reflect common environmental lighting fluctuations observed in educational settings [37][38].
Figure references illustrate the visual impact of each technique (Figure 2 to Figure 5). Brightness is the degree
of lightness or darkness of a color, influenced by the amount of reflected light. Brightness is used to achieve
image variations between dark and bright conditions [24]. We employ the brightness values -25% and +25%,
as illustrated in Figure 2. Exposure reflects the overall light level in a video or image. We use the exposure
values -20% and + 20%, as depicted in Figure 3. Saturation refers to the intensity of a color measured on a
chroma scale. It indicates the extent to which colors in an image mix with shades of gray. We use saturation
values of -40% and + 40%, as illustrated in Figure 4. Hue, a component of the HSV (Hue, Saturation, Value)
colour model, determines primary colours like red, yellow [39], blue, and secondary colours like orange, green,
and purple. The hue values we use are -30° and 30°, as shown in Figure 5. After the augmentation process, the
image data amounting to 5096 images can be formulated as follows, where the validation data is 0. The total
number of images after augmentation is calculated as:

Augmentasi Data = (Training Data x 3) + Validation Data + Testing Data
= (1,638 x3)+ 0+ 182 €]
= 5,096 images

This augmentation did not include a validation set due to limited data availability. Instead, model evaluation
was performed using k-fold cross-validation.
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Figure 2. Brightness in The Image Figure 3. Exposure in The Image

Lilis Nur Hayati (Improving Indonesian Sign Alphabet Recognition for Assistive Learning Robots Using
Gamma-Corrected MobileNetV2)



ISSN: 2685-9572 Buletin Ilmiah Sarjana Teknik Elektro 353
Vol. 7, No. 3, September 2025, pp. 350-361

Saturation

Hue

-0 %
Figure 4. Saturation in The Image Figure 5. Hue in The Image

3.2. Model Development
3.2.1. Model Selection

The SSD MobileNetV2 FPNLite 320320 model was selected based on its low computational complexity
and real-time suitability [40][41]. As shown in Table 1, it offered the best trade-off between speed (22 ms) and
mean Average Precision (22.2 mAP) among several candidates from the TensorFlow 2 Model Zoo. The
lightweight architecture of MobileNetV2, which utilizes depthwise separable convolutions, enables efficient
feature extraction without compromising accuracy. The FPNLite component enhances multi-scale object
detection by refining feature maps at different resolutions.

Table 1. Pre-trained Tensorflow 2 Model Zoo

No Model Name Speed (ms) COCO mAP
1. SSD MobileNet V1 FPN 640x640 48 29.1
2. SSD MobileNet V2 FPNLite 320x320 22 222
3. SSD MobileNet V2 FPNLite 640x640 39 28.2
4. SSD ResNet101 V1 FPN 640x640 (RetinaNet101) 57 35.6
5. SSD ResNet152 V1 FPN 640x640 (RetinaNet152) 80 354
6. Faster R-CNN ResNet50 V1 640x640 53 29.3
7. EfficientDet D6 1280x1280 268 50.5

3.2.2. Model Training

Model training was performed on Google Colaboratory using TensorFlow. A batch size of 52 and 3,000
training steps were applied. The training data was converted into the TFRecord format. We trained the model
with 26 class labels and monitored training loss and accuracy in real time.

3.3. Testing Pipeline

The testing pipeline comprises four main stages: Input Acquisition, Gamma Correction, Dataset Loading,
and Real-Time Recognition.

3.3.1. Input Acquisition

For testing, image input was acquired via a Logitech BRIO 4K Pro webcam, directly capturing live
gestures from the user. The camera was integrated into a notebook interface using OpenCV for real-time frame
acquisition. High-resolution input ensures robust feature extraction by the trained model.

3.3.2. Gamma Correction

Gamma correction is used to adjust the brightness and contrast of images to align with human visual
perception [42][43]. This technique involves applying a nonlinear operation to the pixel values of the image.
The purpose is to correct images that are either too bright or too dark proportionally [44]. Gamma correction
helps the model recognize objects under varying lighting conditions. The gamma correction function is
mathematically expressed as:

Vin\¥
Vo = .(22)

A
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where V;,, € {R,G,, B}, A = 255, and y is the gamma velue (e.g., 1.2, 1.5, or 2.0). This operation enhances
visibility of hand shapes under poor lighting, making the system more resilient to real-world conditions.

3.3.3. Load Trained Model

The trained model, stored as a .ckpt (checkpoint) file in Google Drive, was loaded during testing. This
file contains the model weights and configuration, enabling recognition without re-training. Although referred
to as a "dataset" in prior text, .ckpt is more accurately described as a model checkpoint.

3.3.4. Real-Time Recognition

Using OpenCV and Jupyter Notebook, the system performs real-time recognition of BISINDO hand
gestures. Detected classes are displayed with bounding boxes and confidence scores [45]. The hardware used
for testing is summarized in Table 2.

Table 2. Hardware Spesification

No Hardware Specification
1 Webcam Logitech BRIO 4K Pro
2 CPU Intel Core i7-11370H 3.3GHz (4 Cores)
3 GPU GTX 1650 4 GB VRAM
4 VGA NVIDIA® GeForce® GTX 1050
5 RAM 8 GB DDR4-3200 MHz
6 Storage 512 GB SSD NVMe PCle

4. RESULT AND DISCUSSION

This section presents the results of model evaluation, indoor and outdoor testing, and practical integration
into an assistive learning robot. A comprehensive discussion is provided to contextualize the findings,
benchmark against prior research, and explore the implications of the proposed gamma-corrected recognition
model.

4.1. Cross-Validation Performance

The system was first evaluated using 15-fold cross-validation to assess the model's generalizability. As
shown in Table 3, the average precision was 64% and recall reached 70%. This discrepancy compared to
subsequent testing phases indicates the baseline performance of the model without gamma correction or testing
augmentation. Although moderate, these results demonstrate the model’s capacity to learn meaningful
representations across folds. The relatively lower values, in contrast to high accuracy in later sections, suggest
that lighting inconsistencies in the raw dataset posed challenges during training—thus justifying the use of
gamma correction for further optimization.

Table 3. Cross-validation

Cross-validation Precision Recall
Iteration 1 0.565227 0.683333
Iteration 2 0.603636 0.672727
Iteration 3 0.625000 0.625000
Iteration 4 0.666667 0.741667
Iteration 5 0.683333 0.750000
Iteration 6 0.700610 0.733333
Iteration 7 0.706944 0.766667
Iteration 8 0.670833 0.783333
Iteration 9 0.680903 0.750000
Iteration 10 0.665000 0.666667
Iteration 11 0.651389 0.650000
Iteration 12 0.577143 0.616667
Iteration 13 0.558333 0.683333
Iteration 14 0.511071 0.641667
Iteration 15 0.457639 0.575000
Average 64% 70%
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4.2. Indoor Testing Results
4.2.1. Without Gamma Correction

In this testing phase, we employed two scenarios: one without gamma correction and another with gamma
correction, using illumination measured with a lux light meter [46]. The testing without gamma correction is
depicted in Figure 6(a) to Figure 6(c). Based on the indoor testing results, the average values indicate a
relatively dark environment for both objects and backgrounds. Indoor experiments were conducted in dimly lit
environments (30 lux), simulating common classroom lighting. As depicted in Figure 6 and summarized in
Table 4, the model achieved an average accuracy of 94.47%, precision of 91.30%, and recall of 97.87% across
three test iterations. These results confirm the baseline performance of the SSD MobileNetV2 architecture in
low-light indoor conditions, although slight precision dips were observed under uneven background contrast.

(a) Testing 1 (b) Testing 2 (c) Testing 3
Figure 6. Indoor Testing without Gamma Correction

Table 4. Indoor Testing without Gamma Correction
No  Scenario  Accuracy Precision  Recall

1 Testing 1 0.933 0.895 0.974

2 Testing 2 0.950 0.903 1

3 Testing 3 0.951 0.941 0.962
Average 94.47% 91.30%  97.87%

4.2.2. With Gamma Correction

Figure 7(a) to Figure7(c) illustrate testing using gamma correction with gamma correction values of 1, 2,
and 3. The indoor testing results with excellent average values show that objects and backgrounds appear
brighter compared to those not using gamma correction. Applying gamma correction (y = 1, 2, and 3) yielded
notable improvements. As shown in Figure 7 and Table 5, accuracy increased to 97.33%, precision to 95.23%,
and recall to 99.57%. Visual clarity of gestures improved significantly due to luminance normalization,
especially in darker regions. The gamma-corrected model outperformed the baseline across all metrics. The
increase in recall demonstrates better sensitivity to gesture variations. However, the impact of different gamma
values warrants future ablation studies to isolate optimal gamma levels.

(a) Testing 1 (b) Testing 2 - (c) Testing 3
Figure 7. Indoor Testing using Gamma Correction
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Table S. Indoor Testing Using Gamma Correction
No Scenario  Accuracy Precision Recall

1 Testing 1 0.969 0.951 0.987

2 Testing 2 0.970 0.943 1

3 Testing 3 0.981 0.963 1
Average 97.33% 95.23%  99.57%

4.3. Outdoor Testing Results
4.3.1. Without Gamma Correction
In this test, we employed two scenarios: one without gamma correction and the other using gamma

correction, with lighting measured using a lux light meter, as conducted in the indoor testing. The testing
without gamma correction is depicted in Figure 8 (a) to Figure 8(c). Based on the indoor testing results with a
good average value, the object and the background appear bright. In this experiment, during testing with gamma
correction, we maintained a distance of 50 cm between the actor and the camera, with the camera height aligned
with the actor's chest and lighting set to 278 lux with 3 tests each. Table 6 presents the indoor testing results
using gamma correction. Table 6 shows that the average test values are excellent, with accuracy, precision, and
recall values of 93.8%, 90.33%, and 97.40%, respectively.

|

| '

l

r

‘ /I '
(a) Testing 1 ‘ (b) Testing 2 (c) Testing 3
Figure 8. Outdoor Testing without Gamma Correction

Table 6. Outdoor Testing without Gamma Correction
No Scenario  Accuracy Precision  Recall

1 Testing 1 0.958 0.952 0,962

2 Testing 2 0.952 0.918 0,987

3 Testing 3 0.904 0.840 0,973
Average 93.8% 90.33%  97.40%

4.3.2. With Gamma Correction

Figure 9 (a) to Figure(c) illustrate the testing with gamma correction, with gamma correction values of 1,
2, and 3, respectively. These gamma values are the same as those used in the earlier indoor testing. Based on
the results of the indoor testing with excellent average values, both the objects and the background appear
bright. In this experiment, during testing with gamma correction, we maintained a distance of 50 cm between
the actor and the camera, with the camera's height aligned with the actor's chest and lighting set at 30 lux with
3 tests each. Table 7 presents the results of indoor testing using gamma correction. Table 7 shows excellent
average test values, with accuracy, precision, and recall values of 97.30%, 94.73%, and 100.00%, respectively.
Based on the test results in Table 6, testing with gamma correction yields better results outdoors than testing
without gamma correction.

(a) Testing 1 I - (b) Testing 2 ‘ (c) Testing 3
Figure 9. Outdoor Testing using Gamma Correction
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Table 7. Outdoor Testing with Gamma Correction
No  Scenario  Accuracy Precision Recall

1 Testing 1 0.981 0.963 1

2 Testing 2 0.963 0.928 1

3 Testing 3 0.975 0.951 1
Average 97.30% 94.73%  100.00%

4.4. Implementation Strategy and Robotic Integration

The optimized model was deployed in an assistive robot prototype designed for real-time interaction with
deaf children. The model runs on a lightweight edge computing platform, requiring no high-end GPUs or cloud
dependency [47]. Real-time inference operates under 100 ms per frame, enabling responsive interaction. A
gamma correction module was embedded at the preprocessing stage, normalizing hand gesture frames before
feeding them into the SSD MobileNetV2 classifier. This process mitigates fluctuations in classroom lighting
and ensures recognition reliability. The robot provides multimodal feedback—displaying letters on-screen,
offering voice outputs, and performing simple animations. This interactive loop enhances learning engagement.
Data logging also enables learning progress tracking, offering pedagogical insights for educators and parents
[48]. Importantly, the system avoids complex hardware like depth cameras or gloves, prioritizing accessibility.
By using BISINDO, it aligns with local educational standards, reinforcing cultural relevance. The high
performance across varying environments confirms its deploy ability in both school and home settings.

4.5. Comparative Discussion and Implications

Compared to previous studies in Malaysian Sign Language (99.75% accuracy with SSD-MobileNetV2)
and ASL (99.91% accuracy with CNN-RGB), our system's indoor/outdoor accuracy of 97.3% with gamma
correction is competitive [49]. The novelty lies in its real-time implementation with lighting normalization and
resource-constrained deployability, aspects often omitted in prior works [50]. This study demonstrates the
potential of vision-based systems in inclusive education [12]. However, limitations remain: only static, single-
hand gestures are supported, and dynamic gesture transitions or occlusions remain untested. User experience
trials are also pending, which are essential for validating real-world applicability.

5.  CONCLUSIONS

This study has presented a gamma-corrected SSD MobileNetV2 model for BISINDO alphabet
recognition, with a focus on supporting inclusive educational technologies through real-time assistive robotics.
The experimental evaluations under both indoor and outdoor scenarios demonstrate that gamma correction
significantly improves model robustness against lighting variations, leading to notable enhancements in
classification accuracy, precision, and recall. Indoor testing without gamma correction yielded an average
accuracy of 94.47%, precision of 91.30%, and recall of 97.87%. After applying gamma correction, performance
improved to 97.33%, 95.23%, and 99.57%, respectively. Similar gains were observed in outdoor testing, with
accuracy increasing from 93.80% to 97.30%, precision from 90.33% to 94.73%, and recall achieving 100%
post-correction. These findings confirm that gamma correction effectively addresses luminance inconsistency,
enhancing recognition reliability across diverse environments.

The integration of this lightweight model into a camera-based assistive robot illustrates the feasibility of
deploying sign language recognition systems in low-resource educational settings. By eliminating reliance on
wearable sensors or depth cameras, the system offers a cost-efficient and accessible learning platform. Its
multimodal feedback—through visual display, voice output, and responsive animation—supports interactive
and autonomous alphabet learning for deaf children. Despite these promising results, several limitations
remain. The system is currently restricted to single-hand static gestures and has not yet undergone longitudinal
testing in live classroom environments. Moreover, the absence of statistical validation, such as confidence
intervals or significance testing, presents a potential gap in confirming the generalizability of the observed
improvements. Future work will focus on expanding the system’s capabilities to include dynamic and two-
handed gesture recognition, as well as integrating Natural Language Processing (NLP) modules to support
contextual understanding and sentence-level interpretation. Additionally, formal user studies involving
children and educators will be conducted to evaluate pedagogical effectiveness, usability, and engagement.
Ethical considerations regarding data privacy, especially in child-focused deployments, will also be addressed
to ensure safe and inclusive Al applications in educational domains. In summary, this research contributes a
practical and scalable solution for BISINDO recognition by combining computational efficiency, illumination
robustness, and real-time responsiveness—Ilaying a strong foundation for future advancements in Al-driven
inclusive education.
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