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In recent years, optimization techniques have played a central role in 

enhancing operational efficiency and decision-making across diverse 

industrial sectors, including manufacturing, logistics, and transportation, 

energy, healthcare, and agriculture. These sectors face complex, large-scale, 

and often nonlinear challenges that demand both precision and adaptability. 

The research contribution of this review is to provide a structured 

classification of optimization methods—namely exact algorithms, heuristics, 

metaheuristics, and AI-integrated hybrid models—and to critically evaluate 

their practical applications, limitations, and emerging trends across 

industries. This study adopts a review approach to identify and compare those 

techniques in solving various optimization problems. Through a detailed 

analysis of over 30 recent publications for last four years, the review 

highlights how these techniques are being applied in real-world industrial 

environments, including cold chain logistics, smart energy systems, precision 

agriculture, and healthcare scheduling. The results indicate a growing 

reliance on hybrid and AI-enhanced models due to their superior scalability, 

adaptability, and potential alignment with Industry 4.0 and Sustainable 

Development Goals (SDGs). However, challenges remain in areas such as 

computational efficiency, model interpretability, and real-time data 

integration. In conclusion, this study provides valuable insights for both 

researchers and practitioners seeking to apply optimization techniques more 

effectively in industrial systems, while also identifying critical research gaps 

for future exploration by addressing the growing complexity and 

sustainability demands of modern industry. 
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1. INTRODUCTION 

In recent decades, optimization techniques have become indispensable tools across various industrial 

domains, serving as core enablers for enhancing efficiency, reducing operational costs, and supporting data-

driven decision-making [1]-[3]. The complexity of modern industrial systems—ranging from dynamic 

production lines and large-scale logistics networks to energy distribution and healthcare service management—

has necessitated the adoption of advanced optimization methods capable of addressing multi-objective, 

nonlinear, and large-scale problems. 

To meet these multifaceted challenges, a wide spectrum of optimization methodologies has been 

developed. Classical techniques, such as linear programming and integer programming, have long formed the 

foundation of structured decision-making. These methods offer robust mathematical frameworks for 

optimizing well-defined problems [4][5]. However, the growing complexity and dimensionality of real-world 

applications have necessitated the adoption of more flexible and exploratory approaches [6]. Metaheuristic 

algorithms—including Genetic Algorithms (GA), Particle Swarm Optimization (PSO), Ant Colony 

Optimization (ACO), and Simulated Annealing (SA)—have emerged as powerful alternatives, offering 

heuristic solutions to problems that are nonlinear, multi-objective, and computationally intractable by exact 

methods [7]-[11]. 

Moreover, the rapid convergence of optimization with artificial intelligence (AI) and machine learning 

(ML) has expanded the boundaries of what these techniques can achieve [12][13]. This integration enables 

optimization models to learn from data, adapt to uncertain environments, and operate effectively under real-

time constraints—capabilities that are increasingly essential in the era of digital transformation [14][15]. 

Technologies such as Industry 4.0, the Internet of Things (IoT), and sustainability imperatives are further 

reshaping the landscape of optimization applications, introducing both new opportunities and complex 

challenges for researchers and practitioners alike [16][17]. These advancements demand more adaptive, data-

driven, and real-time optimization approaches to manage dynamic systems, heterogeneous data streams, and 

conflicting performance objectives such as efficiency, resilience, and environmental impact.  

In contrast, the current body of literature tends to remain fragmented. Most existing reviews are limited 

in scope, often concentrating on specific algorithmic categories or confined to particular industrial domains. 

As a result, there is a noticeable gap in comprehensive, cross-sectoral analyses that not only trace the evolution 

of optimization strategies but also compare their real-world effectiveness and limitations. Furthermore, few 

studies have systematically examined how emerging technological and sustainability trends are influencing the 

development and deployment of optimization solutions. 

This review seeks to bridge these gaps by presenting an integrative overview of optimization techniques 

applied across diverse industries. We classify these methods according to their algorithmic foundations, explore 

their sectoral applications, and critically analyze emerging patterns, limitations, and future directions. In doing 

so, this work aims to serve as a valuable reference for both academic researchers and industry professionals 

striving to align optimization strategies with the evolving demands of contemporary industrial systems. 

 

2. CLASSIFICATION OF OPTIMIZATION TECHNIQUE 

Optimization problems encountered in industrial systems vary widely in structure, scale, and complexity. 

Accordingly, a diverse array of solution techniques has been developed and applied to address these challenges 

[18][19]. Based on a comprehensive review of the literature, optimization methods can be broadly classified 

into four major categories (refer to Figure 1): exact algorithms, heuristic methods, metaheuristic algorithms, 

and hybrid or AI-integrated approaches [19]. Each class in this figure offers unique strengths and is suited to 

different problem contexts, reflecting the trade-offs between accuracy, computational efficiency, and 

scalability. 

 

A. Exact Algorithms 

Exact optimization techniques provide mathematically rigorous solutions and are often preferred when 

optimality is critical and problem structures are well-defined [20][21]. Among the most prominent are Linear 

Programming (LP) [22][23], Mixed Integer Linear Programming (MILP) [24], and Dynamic Programming 

(DP) [25].  

LP is a mathematical technique used for optimizing a linear objective function subject to linear equality 

and inequality constraints. It is computationally efficient and suitable for large-scale continuous-variable 

problems. Its main strength lies in the ability to provide exact solutions quickly, especially when model 

assumptions are linear and well-defined [26]. However, LP is limited in handling problems involving discrete 

decisions or non-linear dynamics, which restricts its applicability in more complex, real-world systems [27].  
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MILP extends LP by incorporating integer variables, allowing for the modeling of more complex 

decisions such as on/off states and discrete choices. This makes MILP particularly effective for problems like 

scheduling [28], facility layout [29], and energy system optimization [30]. MILP’s advantage lies in its 

flexibility and precision. However, it is computationally intensive, especially for large-scale problems, due to 

its NP-hard nature. Recent advancements in distributed MILP methods have aimed to address this by reducing 

computational times through relaxed assumptions and decomposition techniques [31] Despite these 

improvements, MILP remains resource-intensive, often necessitating the use of high-performance solvers and 

simplification heuristics for practical applications [32]. 

DP is a recursive optimization approach that solves problems by breaking them down into simpler 

subproblems. It is especially effective for multi-stage decision problems where the system evolves over time. 

One key advantage of DP is its ability to handle both discrete and continuous variables, accommodating 

complex, time-dependent decision environments. In hybrid approaches, DP has been successfully applied 

alongside MILP to decompose large-scale optimization problems, thereby enhancing scalability and 

computational feasibility [29]. However, DP suffers from the “curse of dimensionality,” meaning its 

computational demand increases exponentially with the number of state variables, limiting its standalone 

application in high-dimensional industrial problems. 

These methods guarantee the identification of the global optimum, making them ideal for small to 

medium-sized problems with linear or deterministic constraints [33]. However, their applicability tends to 

diminish with increasing problem complexity or dimensionality, as the required computational resources grow 

exponentially [34]. In summary, while LP offers simplicity and speed, MILP provides modeling flexibility at 

the cost of computational load, and DP excels in time-dependent decision-making but struggles with scalability. 

Hybrid and decomposition-based approaches are increasingly adopted to leverage the strengths of these 

methods while mitigating their individual limitations. 

 

B. Heuristic Methods 

Heuristic techniques are problem-specific strategies designed to produce satisfactory solutions in a 

relatively short time [35]. Unlike exact algorithms, heuristic methods do not guarantee finding the optimal 

solution. However, they are particularly valuable in fast-paced industrial environments where rapid decision-

making is critical [36]. These approaches are specifically designed to produce satisfactory, near-optimal 

solutions within a reasonable amount of time, making them highly suitable for real-world applications where 

time and computational resources are limited. Common examples include greedy algorithms [37], local search 

[38], and rule-based methods [39].  

Greedy algorithms make a series of locally optimal choices with the hope of finding a global optimum. 

They are highly efficient and easy to implement, offering rapid solutions with minimal computational 

overhead. However, their main limitation is the tendency to converge prematurely to suboptimal solutions due 

to a lack of global search capabilities [40]k. To mitigate this, hybrid approaches often integrate greedy 

initialization with more robust optimization methods.  

Local search algorithms, on the other hand, iteratively improve a candidate solution by exploring its 

neighborhood, making them particularly suitable for complex scheduling and layout problems. These methods 

excel in fine-tuning solutions and are often embedded within metaheuristics like Iterated Local Search (ILS) 

and Iterated Greedy (IG) algorithms to enhance solution quality. Their strengths lie in exploiting local optima 

efficiently, though they can still suffer from stagnation without diversification mechanisms [41][42].  

Rule-based heuristics, often used in priority scheduling and dispatching, are characterized by their 

transparency and adaptability. These methods rely on predefined rules derived from expert knowledge or 

empirical patterns to guide decisions. While their simplicity and speed are advantageous, their effectiveness is 

highly dependent on the relevance and accuracy of the encoded rules, which may not generalize well to 

dynamic or unfamiliar environments [43]. To overcome this, recent studies have embedded rule-based 

reasoning into adaptive metaheuristics, enhancing both scalability and responsiveness in uncertain conditions. 

These heuristic methods are commonly applied in real-time scheduling, dispatching, and other operational 

tasks, where obtaining a sufficiently good solution is often more valuable than achieving the optimal solution 

after a delay [44]. In summary, while greedy algorithms and rule-based methods offer speed and simplicity, 

and local search methods improve solution refinement, their individual limitations are increasingly being 

addressed through hybrid combinations tailored for industrial optimization tasks. 

 

C. Metaheuristic Algorithms  

Metaheuristics represent a more flexible and generalized class of optimization methods capable of 

addressing large-scale, nonlinear, and multi-objective problems [45][46]. These algorithms are inspired by 
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natural processes and intelligent behavior, enabling them to explore vast solution spaces effectively [47]. 

Popular metaheuristic techniques include GA, PSO, ACO, SA, and TS [48].  

GA are inspired by the principles of natural evolution and operate through processes such as selection, 

crossover, and mutation [49]. They are known for their global search capability and adaptability across diverse 

domains. However, GAs can suffer from slow convergence and premature stagnation if not properly tuned 

[50]. On the other hand, PSO is based on the social behavior of birds flocking or fish schooling [51]. It excels 

in fast convergence and ease of implementation, making it suitable for continuous optimization problems, 

although it may struggle with premature convergence and local optima in complex landscapes [52]. 

ACO mimics the foraging behavior of ants and has demonstrated effectiveness in discrete and 

combinatorial problems like routing and scheduling. While ACO is robust and scalable, it often requires 

extensive computation and can be prone to stagnation without diversification strategies [53]. SA is inspired by 

the annealing process in metallurgy and is appreciated for its ability to escape local optima by accepting worse 

solutions with a certain probability. Its primary drawbacks include sensitivity to cooling schedule parameters 

and slower convergence compared to other algorithms [54]. TS utilizes memory structures to avoid cycles and 

guide the search process. It is particularly effective in combinatorial optimization, offering strong exploitation 

capabilities. However, it may get trapped in local optima if diversification mechanisms are weak or memory 

structures are not adequately managed [55]. 

Their ability to escape local optima and search globally makes them particularly suitable for complex 

applications such as supply chain optimization, production planning, and energy scheduling [51],[56]-[62]. 

Each algorithm has its unique strengths and limitations. There is no single method that universally superior. 

The choice of algorithm must align with the problem characteristics, and hybrid approaches often outperform 

standalone techniques in real-world applications. 

 

D. Hybrid and AI-integrated Approaches 

The increasing complexity of contemporary industrial challenges—characterized by high levels of 

uncertainty, dynamic conditions, and real-time data—has driven a significant rise in the adoption of hybrid 

optimization methods [63][64]. These approaches combine the strengths of multiple techniques to better 

address the multifaceted nature of modern problems. Notably, the integration of metaheuristic algorithms 

with artificial intelligence (AI) techniques, such as neural networks (NN), fuzzy logic, and reinforcement 

learning, has expanded the frontier of optimization capabilities [65]-[67].  

NN are computational models inspired by the structure and functioning of the human brain, capable of 

learning complex nonlinear relationships from data. Their strength lies in their adaptability, parallel processing, 

and high accuracy in pattern recognition tasks, making them valuable in domains such as fault detection and 

forecasting. However, traditional neural networks often suffer from interpretability issues and are data-hungry, 

limiting their generalization in cases with limited or noisy data [68][69].  

Fuzzy logic provides a framework for reasoning under uncertainty by using linguistic variables and 

approximate reasoning, which is especially useful in environments where systems are difficult to model 

precisely. Its primary advantage is interpretability and its ability to encode expert knowledge into rule-based 

systems. However, fuzzy systems often struggle with scalability and require careful tuning of membership 

functions and rules [70]. Hybrid fuzzy neural networks have emerged to address the limitations of both 

paradigms by combining the generalization capacity of NNs with the interpretability of fuzzy systems [71].  

Reinforcement learning is a learning paradigm where agents learn optimal actions through interactions 

with their environment by maximizing cumulative rewards. RL excels in sequential decision-making and real-

time control tasks such as robotics, energy management, and adaptive control systems. Its key advantage is the 

ability to learn optimal policies without explicit models, but it faces challenges such as high computational 

cost, convergence instability, and the need for large training data or interaction time [72][73].  

These hybrid models are designed to improve convergence speed, enhance solution quality, and increase 

adaptability in rapidly changing environments [74]. The combination of these techniques—such as 

reinforcement learning-based tuning of fuzzy controllers or integration with neural networks—has resulted in 

robust, adaptive, and explainable models capable of performing well in uncertain, dynamic, and data-scarce 

environments [75][76]. In smart manufacturing settings, for example, AI-enabled systems can learn from 

historical and real-time data, while embedded optimization algorithms continuously adjust operational 

strategies to support tasks such as predictive maintenance, sustainability, resource allocation, and energy 

efficiency [77][78]. 

In summary, the spectrum of optimization methods—from exact algorithms to AI-integrated hybrid 

approaches—reflects a continuum of trade-offs between solution accuracy, computational efficiency, 

adaptability, and scalability. Exact methods such as LP, MILP, and DP offer precision and mathematical rigor 
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but are often constrained by problem size and complexity. Heuristic methods provide speed and simplicity for 

problem-specific applications, while metaheuristics extend optimization capabilities to complex, nonlinear, 

and multi-objective problems by leveraging global search strategies. Hybrid and AI-integrated approaches 

represent the frontier of industrial optimization, combining the strengths of multiple paradigms to tackle 

uncertainty, dynamic environments, and real-time decision-making. Selecting the appropriate method requires 

a careful match between problem characteristics and algorithmic capabilities, with hybridization increasingly 

serving as a strategic bridge to balance accuracy, efficiency, and robustness in modern industrial systems. 

 

 
Figure 1. Optimization Methods 

 

3. INDUSTRIAL APPLICATIONS OF OPTIMIZATION 

Optimization techniques have become foundational across a wide range of industrial sectors, each 

presenting distinct challenges, performance goals, and operational constraints. From enhancing process 

efficiency to enabling strategic and data-driven decision-making, optimization continues to transform how 

organizations respond to complexity, uncertainty, and the demand for greater sustainability. The diverse 

applications of optimization span sectors such as manufacturing, logistics, energy, healthcare, and 

agriculture—each leveraging different methodologies tailored to their unique problem landscapes. 

In the manufacturing industry, optimization is extensively employed to streamline production scheduling, 

manage inventory levels, and optimize facility layouts. Given the combinatorial nature of problems such as 

machine loading and resource allocation, some metaheuristic approaches are frequently used. These methods 

allow for efficient exploration of large solution spaces and are particularly valuable in environments that 

demand rapid, flexible, and adaptive decision-making to maintain competitive advantage. 

Logistics and transportation systems, which form the backbone of global supply chains, are another 

critical domain where optimization has a profound impact. Vehicle Routing Problems (VRP), fleet 

management, and delivery scheduling are key areas where metaheuristics have proven highly used. These 

techniques enable dynamic route planning and real-time dispatching, helping to minimize transportation costs 

and improve service reliability—capabilities that are increasingly vital in today’s fast-paced, customer-centric 

markets. 

In the realm of energy systems, where reliability and sustainability are paramount, optimization supports 

a range of activities including load forecasting, renewable energy allocation, and smart grid management. The 

nonlinear, stochastic nature of energy environments has driven the adoption of hybrid models that integrate 

metaheuristics with AI. These combinations enhance the adaptability of decision models, enabling them to 

operate efficiently under uncertainty and optimize the use of renewable resources in real time. 

Within the healthcare sector, optimization serves not only to improve operational efficiency but also to 

address sensitive human-centered outcomes. It is used in applications such as surgery scheduling, emergency 

response allocation, and patient flow optimization. Given the ethical and service-quality requirements of 

healthcare, both exact and heuristic approaches are applied to ensure robust, reliable decision-making. 

Optimization in this field must balance precision with responsiveness, making it one of the most demanding 

yet impactful areas of application. 
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In agriculture, optimization plays an increasingly strategic role in addressing both productivity and 

sustainability goals. It is widely used for irrigation planning, crop scheduling, and supply chain coordination. 

As agricultural systems become more complex due to climate variability and resource constraints, hybrid 

optimization methods have gained prominence. These techniques help decision-makers navigate trade-offs 

between environmental concerns and economic performance, offering actionable insights for sustainable 

agricultural development. Among these sectors, the agricultural logistics domain has seen particularly notable 

progress in recent years, driven by the growing need for intelligent and sustainable food supply chains. 

Literature published between 2022 and 2025 illustrates the optimization techniques in some industrial 

applications, as summarized in Table 1. 

Dong et al. [79] underscore the importance of joint inventory and transportation planning using Ant 

Colony Optimization (ACO). Their approach is especially relevant for handling perishable goods, where both 

storage and delivery times are critical. While ACO is effective in pathfinding, its application to large-scale 

logistics networks can be limited by scalability and convergence speed issues. Li [80] contributes to the 

dialogue on green logistics, applying Particle Swarm Optimization (PSO) to enhance sustainability outcomes. 

PSO demonstrates strong potential in optimizing logistics network layouts, though it may suffer from 

premature convergence in complex search spaces—a limitation that warrants further methodological 

refinement. 

A more advanced hybrid framework is presented by Yu and Cheng [81], who integrate AHP-TOPSIS 

with Large Neighborhood Search and Simulated Annealing for cold chain route planning. This approach 

effectively balances structured multi-criteria decision-making with solution space exploration, though 

challenges remain in terms of scalability and subjectivity in criteria weighting. In a related contribution, 

Grytsiuk and Mysiv [82] apply Dynamic Programming (DP) in conjunction with routing algorithms to logistics 

scheduling problems. DP offers a methodical approach to handling sequential decisions, but its applicability in 

high-dimensional contexts is constrained by the well-known "curse of dimensionality”. The most cutting-edge 

development comes from Liu et al. [83], who utilize Deep Reinforcement Learning (DRL) integrated with 

Swarm Intelligence for site and route optimization in cold chain logistics. This AI-driven method enables 

adaptive, real-time learning and decision-making. However, its practical deployment may be hindered by high 

data and computational requirements, especially in resource-limited agricultural settings. 

These studies collectively highlight a broadening methodological landscape and a shift toward intelligent, 

adaptive optimization techniques in industrial settings. While no single approach can be deemed universally 

superior, the choice of technique must be informed by the specific characteristics of the problem, the available 

data, and the operational objectives at hand. The ongoing integration of AI, the focus on sustainability, and the 

push for scalable, real-time solutions signal a dynamic future for optimization research and its real-world 

applications. 

 
Table 1. Optimization Techniques in Some Industrial Applications 

Year Author 
Industrial 

Sector 

Optimization 

Method 

Research  

Objective 

Proposed Optimization  

Method 

2022 [79] Agriculture 

Inventory and 

transportation 
coordination 

To jointly optimize inventory 

and route planning in Agri-
logistics 

Ant Colony Optimization 

(ACO) 

2023 [80] Agriculture 
Logistics network 

layout optimization 

To improve green logistics 

performance using PSO 

Particle Swarm Optimization 

(PSO) 

2023 [81] Agriculture 
Cold chain 

distribution route 

planning 

To evaluate vehicle options and 

optimize distribution paths for 

cost, quality, and 
environmental goals 

AHP-TOPSIS, Large 
Neighborhood Search with 

SA 

2024 [82] Agriculture 

Route optimization 

and logistics 
scheduling 

Route optimization and 

logistics scheduling 

Routing algorithms, Dynamic 

Programming 

2024 [83] Agriculture 
Site and route 

selection in cold 

chain logistics 

To optimize logistics efficiency 

while reducing emissions 

Deep Reinforcement 
Learning with Swarm 

Intelligence 

2025 [84] Agriculture 
Throughput rate 

prediction 
To optimize throughput rate via 

predictive modeling 
AI-integrated (CRISP-DM + 

Machine Learning + OR) 

2025 [11] Agriculture 

Distribution of 

perishable goods 
under stochastic 

demand 

To optimize availability and net 
profit in agri-food logistics 

Metaheuristic (Modified 
Simulated Annealing) 

2024 [85] Energy system 
Energy and logistics 
resource balancing 

To jointly optimize logistics 
and energy operations in ports 

Hybrid system modeling and 
collaborative optimization 
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Year Author 
Industrial 

Sector 

Optimization 

Method 

Research  

Objective 

Proposed Optimization  

Method 

2024 [86] Energy system 
EV charging station 

placement 
To minimize power loss and 

improve voltage profile 
Improved Bald Eagle Search 

(IBES) algorithm 

2022 [87] Healthcare 
Cold chain delivery 

path optimization 

To improve reliability and 

security in hospital logistics 

Bee-Ant Optimization 

Algorithm (BAOA) 

2023 [88] Healthcare 
Cold chain routing 
with time windows 

To ensure timely delivery and 

minimize risks in medical 

logistics 

VRPTW (Vehicle Routing 

with Time Windows), 

Minimax model 

2023 [89] 

Logistics and 

transportation 

Travelling Salesman 

Problem (TSP) 

To optimize initial solutions for 

TSP 

Heuristic (Augmented Tour 

Construction) 

2024 [90] 

Logistics and 

transportation 

System availability 

and routing 

To evaluate and compare 
metaheuristics for CPS logistics 

performance 

Grey Wolf Optimizer, Cat 
Swarm Optimization, 

Cuckoo Search 

2024 [91] 

Logistics and 

transportation 

Freight rate 

forecasting 

To optimize ocean freight 

pricing predictions 
Machine Learning (ML) 

2024 [92] 

Logistics and 

transportation 

EV routing 

optimization 

To minimize operational cost 

including charging and 
penalties 

Exact (Mixed Integer Linear 

Programming) 

2025 [93] 

Logistics and 

transportation 

Carbon impact in 

logistics 

To optimize logistics 

operations and reduce 
emissions using AI 

AI-integrated optimization 

2025 [94] 

Logistics and 

transportation 

Localization 
inefficiencies in IoT 

networks 

To optimize localization 

accuracy and energy use 

Hybrid (Metaheuristic + 

Machine Learning) 

2022 [95] 

Manufacturing 

industry 

Time-series-based 

process optimization 

To use RNNs to predict and 

optimize outcomes in 
production environments 

Recursive Neural Networks 

(RNN) 

2023 [96] 

Manufacturing 

Industry 

Order allocation and 

supplier selection 

To optimize supplier selection 

and order planning 
Hybrid (GA + TOPSIS) 

2023 [97] 
Manufacturing 

Industry 

Unconstrained 

continuous 

optimization 

To optimize continuous 
functions 

Metaheuristic (Cholesterol 
Algorithm) 

2024 [98] 

Manufacturing 
industry 

Sustainable 
production planning 

To integrate human-centric AI 

and multi-objective 

optimization for sustainability 

Genetic Algorithm, PSO, 
Reinforcement Learning 

2024 [99] 

Manufacturing 

Industry 

Flexible job shop 

scheduling 

To minimize makespan, 

energy, and CPU usage 

Metaheuristic (Elitist Spotted 

Hyena Optimization) 

2024 [100] 

Manufacturing 

Industry 

Welding parameter 

optimization 

To optimize weld strength and 

predict bending properties 

AI-integrated (Neural 
Networks - CFNM & 

FNNM) 

2024 [101] 

Manufacturing 
Industry 

Fault diagnosis in 
bearings 

To optimize diagnosis accuracy 
AI-integrated (Clustering 

with K-Means) 

2024 [102] 

Manufacturing 

Industry 

Assembly line 

balancing with HRC 

To optimize assembly line 

design with setup time 

Metaheuristic (Genetic 

Algorithm) 

2024 [103] 

Manufacturing 

Industry 
Sales prediction To optimize sales forecasting 

AI-integrated (Neural 

Network) 

2024 [104] 

Manufacturing 

Industry 

Dynamic product 

pricing 

To optimize pricing strategy 

based on perception and service 

Hybrid (Interval Type-2 

Fuzzy Logic System) 

2025 [105] 

Manufacturing 

Industry 

Downtime 

prediction and 

reduction 

To optimize production 

efficiency through ML-driven 

maintenance 

Machine learning (AI-

integrated) 

2025 [106] 

Manufacturing 
Industry 

Defect prediction 
and process quality 

To optimize surface quality 
using Six Sigma & ML 

Hybrid method (DOE + ML 
+ Six Sigma) 

2025 [107] 

Manufacturing 

Industry 

Inspection resource 

allocation 

To optimize inspection cost 

without reducing quality 
Exact (Linear Programming) 

2025 [108] 

Manufacturing 
Industry 

Weighted Set 

Covering Problem 

(WSCP) 

To optimize WSCP solution 
testing with new data sets 

Exact (Integer Programming 
- Gurobi/CPLEX) 

 

4. EMERGING TRENDS AND RESEARCH GAPS 

Recent advances in optimization techniques for industrial applications—particularly within the 

frameworks of Industry 4.0 and Industry 5.0—are increasingly aligned with the objectives of the United 

Nations Sustainable Development Goals (SDGs), particularly SDG 9 (Industry, Innovation and Infrastructure), 

SDG 12 (Responsible Consumption and Production), and SDG 13 (Climate Action). A critical review of recent 

literature reveals key trends and exposes persistent research gaps, both in methodologies and across specific 

industrial domains. Data-driven and AI-integrated optimization methods are increasingly used, especially in 

supply chains and manufacturing. Operations research (OR) modeling and reinforcement learning have been 
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emphasized for their potential to enhance dynamic decision-making, yet scalability and practical deployment 

remain significant barriers [109][110]. In industrial manufacturing, exact algorithms and heuristic approaches 

are applied to tasks such as predictive maintenance and scheduling. However, gaps remain in hybridizing these 

techniques to improve adaptability and responsiveness to real-time constraints [111]. Across domains such as 

logistics, energy, healthcare, and agriculture, the adoption of optimization techniques continues to expand but 

faces domain-specific hurdles that mirror those observed in manufacturing. 

In logistics and transportation, metaheuristic algorithms such as GA and PSO are widely employed for 

routing, fleet management, and last-mile delivery. Yet, integration with AI to handle uncertain or time-varying 

parameters is still underexplored, leading to inefficiencies in dynamic urban settings [94],[109]. In the energy 

systems sector, especially smart energy, optimization efforts have largely focused on asset performance 

management using data mining and hybrid AI-based forecasting models. However, there is a lack of robust 

frameworks that can effectively integrate historical process knowledge with real-time control, limiting 

scalability and reliability [110],[112].  

In the healthcare sector, optimization is gaining traction in areas such as medical logistics, patient 

scheduling, and resource allocation. Despite the adoption of heuristic and metaheuristic approaches, challenges 

persist in ensuring explainability, reliability, and integration with electronic health records in real-time systems 

[113][114]. The agricultural sector faces distinct optimization challenges in areas like precision farming, 

resource scheduling, and supply chain coordination. Although hybrid AI models have been explored, limited 

progress has been made in applying scalable optimization frameworks that can adapt to regional constraints, 

climatic variability, and fragmented data sources [115].  

Industry 5.0 introduces additional complexity by prioritizing human-centric, resilient, and sustainable 

optimization models. Technologies like federated learning, collaborative robotics, and autonomous systems 

have potential to revolutionize optimization strategies but currently suffer from fragmented research and 

insufficient implementation guidelines [113]. Moreover, cybersecurity considerations remain an overlooked 

yet critical element in optimization design, particularly as industries become more digitally interconnected 

[116]. In conclusion, while there is robust development in optimization methods such as exact, heuristic, 

metaheuristic, and AI-integrated techniques across industrial domains, persistent gaps in adaptability, 

integration, standardization, and domain-specific applicability present vital opportunities for future research. 

 

5. CONCLUSION 

This comprehensive review has illustrated the evolving landscape of optimization techniques as applied 

across various industrial domains. By categorizing methods into exact, heuristic, metaheuristic, and hybrid/AI-

integrated approaches, the study provides a foundational understanding of how different strategies align with 

the structural and operational needs of manufacturing, logistics, energy systems, healthcare, and agriculture. It 

is evident that no single method is universally optimal; instead, the suitability of a technique depends on 

problem complexity, data availability, and specific industrial constraints. Recent studies demonstrate a strong 

trend toward hybrid and AI-driven approaches, which enhance the adaptability, convergence speed, and 

robustness of traditional models. These methods are increasingly deployed in smart environments that require 

real-time responses and sustainable decision-making, aligning well with the objectives of Industry 4.0, Industry 

5.0, and the SDGs. Despite this progress, notable research gaps remain in areas such as scalability, integration 

with real-time systems, explain ability, and cybersecurity. Moreover, the potential of emerging technologies—

like federated learning, collaborative robotics, and intelligent edge computing—remains underexplored in 

optimization contexts. In conclusion, while substantial advancements have been made, the continued 

refinement of optimization techniques, particularly in the context of hybrid and intelligent systems, will be 

essential to addressing the growing complexity and sustainability demands of modern industry. Future research 

should focus on bridging methodological gaps, enhancing cross-disciplinary integration, and developing 

resilient, transparent, and ethically responsible optimization frameworks. Collaboration between operations 

research, computer science, industrial engineering, data science, and domain-specific fields—such as 

healthcare, energy, and agriculture—is crucial. Operations research and industrial engineering offer structured 

decision models, computer science contributes algorithmic scalability and AI integration, data science ensures 

robust data handling and analytics, while domain experts provide contextual insights essential for developing 

solutions that are both practical and impactful. 
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