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This study presents the Novel Navigation Orca Algorithm (NNOA), an 

innovative optimization algorithm derived from Orca Algorithm (OA). 

NNOA addresses the unit commitment (UC), a complex issue in power 

systems that focuses on scheduling generator units to meet power demand 

while taking into account each generator's limitations, with the goal of 

lowering operating costs and gas emissions. NNOA exhibits orca hunting 

behavior through echolocation, utilizing the Doppler effect principle to 

promote adaptive movement and circumvent local optima, as in contrast to 

OA's wave-based exploration. The algorithm was evaluated utilizing IEEE 

30-bus system data, focused on the Integrated Economic and Emission 

Dispatch (IEED) objective. The performance was evaluated against OA and 

Particle Swarm Optimization (PSO) through convergence analysis over 10 

and 30 trials, each consisting of 100 iterations. NNOA decreased the IEED 

value by 1.33% in regard to OA and 1.51% in regard to PSO. NNOA achieved 

convergence in 10 iterations, whereas OA required 35, indicating 71.4% 

faster convergence rate. Wilcoxon rank-sum tests demonstrated significant 

differences between NNOA, OA, and PSO pairings. NNOA's per-iteration 

computation time exceeds the time needed by PSO, but it remains economical 

and profitable. Significantly, NNOA contributes minimizing the fuel 

consumption and emissions cost, which has a positive environmental impact. 

It effectively adheres to the required constraints, which include the hourly 

power demand and generator output limits. Future research is encouraged to 

apply NNOA to larger-scale power systems and explore its hybridization with 

PSO to enhance computational efficiency, result consistency, and robustness 

in practical grid operations. 
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1. INTRODUCTION 

Annually, power plants consume large amounts of energy to generate a reliable supply of electricity to 

meet the needs of society and industry [1][2]. This high level of consumption emphasizes the importance of 

efficiency and sustainability in the electricity generation process [3][4]. The application of more efficient and 

environmentally friendly technologies to reduce negative impacts on natural resources and the environment is 

an important need [5][6]. The power system's energy supply is achieved by the integration of diverse generating 

units. This combination needs to take into account both economic and environmental factors, as the increasing 

awareness of people to protect the environment demands the provision of electricity at low cost and with 

minimal emission levels [7][8]. Various methodologies and research continue to be developed to achieve more 

economical energy management and reduce negative impacts in power plant operations, one of which is 

through a comprehensive analysis of the Unit Commitment (UC) problem [9].  

The UC problem is a scheduling issue in power generation focused on fulfilling electricity demand, 

comprising two primary assignments, establishing the on/off schedule of generating units and allocating the 

load among generators while adhering to operational restrictions [10][11]. The principal constraints in the unit 

commitment problem related to adhering to the minimum and maximum generation capacity of power units, 

alongside ensuring stability between total power production and load demand. Supplementary constraints 

encompass technical operating limitations, including minimum operational durations for units and reserve 

power constraints. Optimizing UC is often associated with the objective of minimizing operational costs and 

emissions [12]. Optimization efforts in the UC problem can be combined with Economic Load Dispatch (ELD) 

and Emission Dispatch (ED), forming the Integrated Economic and Emission Dispatch (IEED) problem [13]. 

However, solving the UC problem does not always involve environmental factors, as it often focuses solely on 

optimizing ELD. The UC problem with IEED is an example of a nonlinear optimization problem in the power 

system sector, which can be solved using various approaches [14][15]. Investigation of the UC problem has 

become a complex one [16][17]. To address the UC problem, it's very hard to combine conventional 

methodologies because it's hard to compute multi-objective functions with various constraints to obtain good 

results [18]. These complex systems, which combine binary generator schedule decisions (on/off) with power 

distribution, often require advanced methodologies, such as metaheuristic algorithms, to find the optimal 

operational cost solutions [19]. One of the key advantages of metaheuristic algorithms is their ability to 

efficiently explore large and complex solution spaces, enabling the discovery of near-optimal solutions with 

relatively low computational cost [20][21].  

Metaheuristic algorithms are sophisticated optimization techniques employed to address complex 

problems that conventional approaches struggle to resolve.  They examine natural phenomena, such as genetics 

and swarm behaviour, to identify optimal solutions in extensive research domains [22][23]. Metaheuristic 

algorithms can be classified into various groups, including evolutionary [24], swarm-based [25], physics-based 

[26], and human-based algorithms [27], each possessing distinct properties and uses [28]. Although effective 

in exploring extensive search spaces, these algorithms typically do not assure a globally optimal solution, but 

rather a near-optimal one within a tolerable computational timeframe [29][30]. This aspect fundamentally 

corresponds with the concepts of the No Free Lunch (NFL) theorem, which asserts that no singular approach 

can proficiently address all optimization challenges [31]. Prior studies predominantly addressed the unit 

commitment problem through a singular objective of minimizing operational costs, however research focusing 

on dual objectives, namely minimizing both costs and emissions remains scarce, indicating numerous avenues 

for exploration [32]. 

The newly invented metaheuristic method by Afandi [33], known as the orca algorithm (OA), has been 

utilized in several instances of both continuous and binary issues. OA is an artificial intelligence modelled on 

the hunting strategies of orca whales, specifically related to prey selection and pursuit. OA is defined by the 

parameters of orca count, wave factor, prey quantity, and prey search cycle [33]. Afandi's research [33] on OA 

illustrates its ability for swift and effective convergence in resolving power system scheduling challenges 

associated with load flexibility from electric vehicles. The process of this algorithm is presented in selecting 

phase, speeding phase, and ambushing phase [33]. OA has not been rigorously compared with competing 

methods and has not been assessed for robustness in multi-area systems or dynamic conditions. So, it wasn't 

clear how well it worked or how well it could be scaled up, especially in more complicated optimization 

situations like IEED. Also, early versions of OA didn't use scientifically inspired features like echolocation, 

which real orcas use to find prey and navigate in an upright position. These limitations offer the potential for 

improvement by incorporating more realistic behavioural traits into the algorithm.  

Based on this background, we developed a new approach by modifying the OA based on prey-hunting 

navigation behavior, referred to as the Novel Navigation Orca Algorithm (NNOA). NNOA exhibits orca 

hunting behavior through echolocation, utilizing the Doppler effect principle to promote adaptive movement 
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and circumvent local optima, as in contrast to OA's wave-based exploration. The integration of position shift, 

considering the Doppler effect into the OA creates a navigation mechanism that assists orca whales in hunting 

prey. The orca whale recognizes the movement and size of prey through the reflection of sound waves [34][35]. 

The Doppler effect is a physical phenomenon that happens when the frequency or wavelength of sound waves 

that an observer (orca) hears changes because the source (prey) and the observer are moving relative to one 

other. This impact is mathematically changed in the algorithm to make the orca's movement in the solution 

search as fast and accurate as possible, with a concentration on speed and direction calculations. With the 

Doppler effect, each orca can adjust its speed and direction according to its movement relative to the prey [36]. 

This dynamic adaptation provides variation in the resulting solutions, avoiding an early solution that is too fast 

and thus improving the algorithm’s ability to find the optimal point in a complex search space with many 

possible solutions. This dynamic adaptation facilitates movement diversification during the exploratory phase 

when the orca is distant from the prey, and enhances intensification or exploitation when the orca nears the 

target solution. This conduct corresponds with the concepts of exploration and exploitation in metaheuristic 

algorithms [37]. Exploration seeks to extensively investigate the solution space to circumvent local optima, 

whereas exploitation concentrates on deepening the search around the most promising solutions identified too 

far. The integration of the Doppler effect in NNOA functions as an adaptive controller that sustains equilibrium 

between exploration and exploitation, essential for identifying the global optimal solution within a complex 

and multimodal search space. 

The modified version of OA will be subjected to a comparative performance assessment against 

metaheuristics that are extensively used, such as particle swarm optimization (PSO) [30] and OA [33], in order 

to verify its effectiveness and robustness. In this study, OA serves as the primary benchmark, as NNOA is a 

modified variation of OA. This selection enables us to accurately evaluate the performance enhancement 

brought about by the new navigation algorithm on NNOA. Concurrently, PSO is a reputed powerful 

metaheuristic algorithm. PSO is frequently employed as a standard in optimization research due to its strong 

performance across diverse tasks [38][39].  

This research contributes to adjust OA to more closely align with the natural behavior of orca whales, 

which is anticipated to enhance the IEED value in the UC problem. The new algorithm named the Novel 

Navigation Orca Algorithm (NNOA). By integrating orcas' advanced hunting behavior, including doppler 

effect, NNOA has the ability to discover optimal solutions. The capacity of NNOA in optimizing the unit 

generator scheduling in power systems directly impacts energy reduction in the electrical grid, supports 

decision-makers in formulating energy efficiency and cost policies, and can lower electricity costs paid by 

consumers. This indirectly contributes to the sustainability of the power system in the future. To make reading 

this article easier, the researcher has arranged the paper as follows: Section 2 describes the methodology 

utilized in this study, Section 3 offers the experimental results, and Section 4 concludes the findings. 

 

2. METHODS 

2.1. Research Data 

IEEE 30-buses system is a problem to assess the algorithm's robustness in solving the unit commitment 

problem in this research. The system includes 30 buses, 41 lines, and 15 load buses [40][41]. The system 

consists of six generators. The unit commitment optimization problem generates a combination of generator 

power and schedule within a certain time frame, taking cost and emission coefficients into account, to meet the 

system's demand. The IEEE 30-bus system is a benchmark test system frequently utilized in power systems 

research. It denotes a medium-scale power grid that is intricate, yet feasible for the simulation and evaluation 

of optimization techniques [25]. Table 1 represents the generator cost and emission coefficient in IEEE 30 bus 

System. Table 2 shows the demand that use in this research. 

 
Table 1. Generator Cost and Emission Coefficient in IEEE 30-Buses System 

Generator 𝒂𝒊 𝒃𝒊 𝒄𝒊 𝜶𝒊 𝜷𝒊 𝜸𝒊 𝑷𝒊
𝒎𝒊𝒏 (MW) 𝑷𝒊

𝒎𝒂𝒙
 (MW) 

Gen 1 0.00375 2.00 0 0.0126 -1.1000 22.983 50 200 

Gen 2 0.01750 1.75 0 0.0200 -0.1000 25.313 20 80 
Gen 3 0.06250 1.00 0 0.0270 -0.0100 25.505 15 50 

Gen 4 0.00834 3.25 0 0.0291 -0.0050 24.900 10 35 

Gen 5 0.02500 3.00 0 0.0290 -0.0040 24.700 10 30 
Gen 6 0.02500 3.00 0 0.0271 -0.0055 25.300 12 40 
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Table 2. Power Demand in Every Hour (MW) 
Hour Demand (MW) Hour Demand (MW) 

1 130 13 420 

2 140 14 410 

3 150 15 390 
4 160 16 370 

5 180 17 340 

6 200 18 310 
7 220 19 280 

8 250 20 250 

9 300 21 220 
10 330 22 180 

11 360 23 150 

12 400 24 130 

 

2.2. Problem Formulation 

2.2.1. Objective Function 

The mathematical formulations for Economic Load Dispatch (ELD) [42], Emission Dispatch (ED) [43], 

and Integrated Economic Emission Dispatch (IEED) are articulated as Eq. (1), Eq. (2), and Eq. (3) respectively. 

 𝐶𝑡 = ∑ (𝑐𝑖 + 𝑏𝑖 . 𝑃𝑖 + 𝑎𝑖 . 𝑃𝑖
2)

𝑔

𝑖=1
 (1) 

 𝐸𝑡 = ∑ (𝛾𝑖 + 𝛽𝑖 . 𝑃𝑖 + 𝛼𝑖 . 𝑃𝑖
2)

𝑔

𝑖=1
 (2) 

 𝐼𝑡 = 𝑤. 𝐶𝑡 + (1 − 𝑤). 𝐸𝑡 (3) 

𝐶𝑡  signifies the fuel cost expressed in dollars per hour ($/hour), whereas 𝐸𝑡 indicates the exhaust 

emissions generated by the power system, measured in kilograms per hour (kg/hour). The input comprises the 

electrical power for each generator, represented as 𝑃𝑖 , where g signifies the total count of generators. The fuel 

cost coefficients for the IEEE 30-bus system are denoted as 𝑐𝑖 , 𝑏𝑖 , and 𝑎𝑖. The parameter values for gas 

emissions are represented as 𝛾𝑖 , 𝛽𝑖 , and 𝛼𝑖 in IEEE 30-bus system. 𝐼𝑡 represents the IEED value, integrating w 

as a compromise factor that indicates the system's priority. The value of 𝑤 used is between 0 to 1 (0 ≤ 𝑤 ≤ 1). 

In this research, 𝑤 was determined 0.6. 

 

2.2.2. Constraints 

In an IEED situation, 𝑃𝑖   has to meet the hourly power demand and be able to deal with power shortages 

or surpluses. Eq. (4) shows how much power is needed in an IEED instance. 𝑃𝐷 is the total power demand and 

𝑃𝐿  is the power loss. 

 ∑ 𝑃𝑖 = 𝑃𝐷 + 𝑃𝐿

𝑔

𝑖=1
 (4) 

The power to be distributed has size limits that follow IEEE 30-bus system data. The value of power as 

denoted 𝑃𝑖 . The term 𝑃𝑖
𝑚𝑖𝑛 represents the minimum power value. 𝑃𝑖

𝑚𝑎𝑥  represents the maximum power. The 

constraints on power output are defined in Eq. (5). This approach is constrained by the presumption that power 

loss is negligible because its value is close to zero. The power generated by the generator is assumed to be 

equivalent to the power used by the end user. 

 𝑃𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑖 ≤ 𝑃𝑖

𝑚𝑎𝑥 (5) 

A proficient generrating unit scheduling system is essential to optimize power generation and adequately 

satisfy load demand. A proficient scheduling strategy utilizing artificial intelligence programming methods is 

implemented for various producing units. Figure 1 illustrates an optimal scheduling system for six generating 

units utilize a standard IEEE 30-Bus System dataset [44]. The system has power load demand constraints and 

an objective function in the form of an IEEE function, which results in generator scheduling optimization and 

optimal power distribution. 
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Figure 1. The system Model 

 

2.3. The Proposed Algorithm for Unit Commitment 

This research introduces an innovative algorithm. The NNOA algorithm is a modification of OA. NNOA 

brings the actual situation, that is use the echolocation appliances for orca’s prey hunting. Echolocation is a 

sensory system that helps hunters locate the location of prey [45]. The echolocation mechanism detects and 

distinguishes prey by emitting sound waves [46]. When approaching its prey, the increased echolocation click 

frequency due to the doppler effect conveys crucial information about the prey's distance and speed [34]. The 

obvious difference among OA and NNOA is in the prey selection phase, OA uses the wave factor, while in the 

NNOA algorithm, the wave factor is replaced by the echolocation factor using the doppler effect. During the 

exploration phase, orca whales locate their prey by adjusting their speed and position through the mathematical 

model of doppler effect. A visual representation of the Doppler effect's placement within OA can be seen in 

the following flowchart, where NNOA integrates the Doppler effect during the selecting phase as like Figure 

2. 

 

 
Figure 2. Flowchart of NNOA based modified OA [33] 

 

In particular, Orcas use echolocation to navigate and communicate in the dark and vast maritime habitat. 

During this process, orcas generate high-frequency clicking sounds into the surrounding environment [47],[34]. 

Doppler effect is a periodic change in frequency when an observer moves relative to the source. With Doppler 

effect, the perceived frequency of sound can change due to the relative motion between the observer and the 

source [48]. Compared to the frequency of the sound itself, the received frequency is higher during approach, 

identical during passing, and lower during movement. Here is the origin formula of Doppler effect shown by 

Eq. (6) [36]: 

 𝑓𝑝 =
𝑣 ± 𝑣𝑝

𝑣 ± 𝑣𝑠

. 𝑓𝑠 (6) 
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 Let 𝑓𝑝 denote the frequency of sound perceived by the listener, 𝑣 represent the velocity of sound 

transmission in water, 𝑣𝑝 signifies the relative velocity of the listener with respect to the sound source (positive 

when approaching and negative when receding), 𝑣𝑠 indicate the relative velocity of the sound source concerning 

the listener (positive when moving away and negative when approaching), and 𝑓𝑠 denote the frequency emitted 

by the sound source. Table 3 displays the pseudocode, providing a systematic depiction of the revised NNOA 

algorithm. Whereas, Figure 3 provides a comprehensive flowchart to elucidate the entire implementation and 

operation of the NNOA algorithm. This graphic depicts the execution sequence of each phase, from 

initialization to termination, and demonstrates the interaction of the main components during the optimization 

process. 

 
Table 3. Pseudocode of NNOA 

NNOA Pseudocode 

01: Initialization of NNOA parameters  

02: Initializing the population (the velocity and generator unit ON/OFF status combinations as the orca’s position, ON/OFF status is 

represented by 0 or 1 which is generated randomly) 
03: Assign starting power outputs randomly that satisfies the system constraints provided (4) and (5). 

04: Calculate the objective function of IEED. Save the best IEED value and orca's position. 

05: Selecting Phase. For each iteration, the orca’s position and velocity update using the Doppler effect that is determined by Eq. (7) and 
Eq. (8). Eq. (9) and Eq. (10) are the formula of updating orca’s position and velocity. 

 𝐷 = √∑(𝑣ℎ𝑐,𝑝 − 𝑣𝑎ℎ𝑐,𝑝)
2

𝑁

𝑖=1

 (7) 

 𝐷𝐸 =  𝑒−𝐷. 𝐹 (8) 

 𝑣ℎ𝑐,𝑝 = 𝐷𝐸ℎ𝑐,𝑝. (𝑥ℎ𝑐,𝑝
𝑏𝑒𝑠𝑡)−𝑥̅ℎ𝑐,𝑝 + 𝑥ℎ𝑐,𝑝 (9) 

 𝑥ℎ𝑐,𝑝 = 𝑥ℎ𝑐−1,𝑝 +  𝑣ℎ𝑐,𝑝. (𝑥ℎ𝑐,𝑝
𝑏𝑒𝑠𝑡) (10) 

ℎ𝑐 symbolizes the hunting cycle which indicates the number of iterations. 𝑝 represents of the number of orca. 𝑣ℎ𝑐,𝑝 represents the 

velocity of the orca that is randomly generated in the step 02, 𝑣𝑎ℎ𝑐,𝑝 represents the velocity of prey that is randomly generated. 

Conceptually, Eq. (7) is a form of Euclidean distance D in the velocity domain, Where F represents the sound frequency of orca. Eq. 

(8) delineates the intensity of the Doppler effect (𝐷𝐸) as an exponential function of the velocity differential between the orca and its 

prey, multiplied by the orca's sound frequency. An increased value of 𝐷 correlates with a diminished 𝐷𝐸, illustrating the biological 

response mechanism of orca whales to variations in sound frequency induced by movement. 𝑥ℎ𝑐,𝑝
𝑏𝑒𝑠𝑡 is the best orca position at each 

iteration, 𝑥̅ℎ𝑐,𝑝 represents the average orca position from one iteration to the next, while 𝑥ℎ𝑐,𝑝 is the current orca position. 

06: Update the orca group position with Eq. (11) and Eq. (12) 

 
𝑥ℎ𝑐,𝑝

𝑔
= {

𝑥𝑔,𝑝 + 𝑁. ∅ℎ𝑐,𝑝(𝑥𝑔,𝑝 − 𝑥ℎ𝑐,𝑝)   𝑓𝑜𝑟 𝐵𝑝 < 𝐴

𝑥𝑔,𝑝    𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  
 

(11) 

 (12) 

With 𝑥𝑔,𝑝 is the average position of orca. 𝑛 represents the number of orca, ∅ℎ𝑐,𝑝 = [-1,1], 𝐵𝑝 = [0,1], A is the ambushing rate with 

value 0.5. 

07: Update the best position based on 𝑥ℎ𝑐,𝑝
𝑔

 

08: Compute velocity acceleration: acceleration update based on the swarm's average velocity with Eq. (13) 

 𝑣𝑎ℎ𝑐,𝑝 =
∑ 𝑣ℎ𝑐,𝑝

𝑁
 (13) 

Update the velocity acceleration 𝑣𝑎ℎ𝑐,𝑝. The orca's position is then updated based on its velocity. The velocity is utilized to update 

the position of the orca 𝑥𝑎ℎ𝑐,𝑝.  

09: Speeding Phase. Calculate the speeding position with Eq. (14) 

 𝑥𝑎ℎ𝑐,𝑝 = (𝑥ℎ𝑐,𝑝
𝑔

) + 𝑆. ∑ 𝑣𝑎ℎ𝑐,𝑝 (14) 

To convert the value of 𝑥𝑎ℎ𝑐,𝑝 use the condition as like Eq. (15) and Eq. (16): 

 
𝑥𝑎ℎ𝑐,𝑝 = {

1  , 𝑖𝑓   𝑥𝑎ℎ𝑐,𝑝 > 0.5

0  , 𝑖𝑓   𝑥𝑎ℎ𝑐,𝑝 ≤ 0.5
 

(15) 

 (16) 

10: Adjust the power and total power based on the ON-OFF status indicated by 1 and 0 

11: Ascertain the expenses and emissions by employing the established power distribution. 
12: Save the best position. Revise the optimal solution. If the current IEED value is less than the preceding one, then designate it as the 

optimal IEED value. The orca locations indicating ON/OFF state and power output are revised according to the optimal IEED value. 

13: Ascertain if the number of iterations has reached the maximum threshold. If confirmed, the process is suspended. 

14: End 
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Figure 3. Flowchart for implementation of NNOA 

 

Maintaining a balance between power generation and demand is crucial for achieving the goals of an 

effective and efficient power system. Compiling the hourly change of generated electricity necessitates 

meticulous calculations. The steps in generating power from generator units are listed below. 
1. Generates a combination of ON or OFF status of each generator in each hour for 24 hours on each 

generated particle.  

2. Randomly set the power that meets the constraints of each generator that has an ON status. For generators 

that have OFF status, it is set to have power with a minimum limit value.  

3. Calculate the total power output for each particle per hour.  

4. If the total hourly power of each particle exceeds the power demand, it is necessary to reduce the power. 

Power reduction is applied to units that produce power above their minimum limit. As long as the 

difference between total power and demand is greater than an epsilon (a tiny number close to 0), it will 

be adjusted iteratively.  

5. Increase power if total power is less than demand. We will only try to increase the unit's power if it is 

generating power below its maximum limit. As long as the difference between demand and total power 

is still greater than epsilon (a tiny number close to 0), it will be adjusted iteratively.  

6. Ensure that the power for each unit does not exceed its minimum or maximum power limit. 7. Power 

demand adjustment is complete. 
 

2.4. Evaluation and Comparison Design 

To test the effectiveness, efficiency, and stability of the NNOA algorithm, the outcomes of solving the 

UC issue using OA and PSO were compared. The evaluation is done using descriptive statistics and display of 

convergence values in 30 trials for 100 iterations on each algorithm [49]. Then the mean convergence value in 

30 trials is compared and shown. For each experiment, the statistical findings recorded include the best solution, 

average, and standard deviation. From 30 independent trials, boxplots were produced to evaluate the efficacy 

of all three techniques based on overall operational costs as an objective function [50]. In addition, to 

statistically confirm the performance differences among the algorithms, a non-parametric test named Wilcoxon 

rank-sum tests was performed on the objective function values derived from 30 independent trials, with a 

significance threshold of 𝜌 < 0.05. 

In this study, OA is the direct benchmark since NNOA is a modified variant of OA. This selection allows 

us to precisely assess the performance improvement introduced by the new navigation method on NNOA. 

Meanwhile, PSO is a popular and well-known efficient metaheuristic algorithm. PSO is often used as a 

benchmark in optimization research thanks to its robust performance in various challenges [38][39],[9],[51]. 

In the test scenario, exposing the parameters of each algorithm is important to know the test conditions. 
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Parameter selection is crucial to achieve the efficiency of a metaheuristic algorithm, as its performance is 

greatly influenced by the parameters used [52][53]. Table 4 summarizes the parameter settings used for the 

comparative analysis of NNOA, OA, and PSO. The population size N for NNOA, OA, and PSO is established 

at 5, with the number of iterations (it) fixed at 100, to guarantee uniform search effort among the algorithms. 

Our preliminary investigations revealed that expanding the population size beyond 5 resulted in negligible 

performance gains while dramatically increasing calculation time. Based on the experiments for NNOA and 

OA, there is a distinction in that OA has a parameter T which is the wave height whereas NNOA does not. The 

shift is because in OA to update the speed and position of the orca is inspired by the seawater wave component, 

but in NNOA the seawater wave factor is replaced by the doppler effect which depicts echolocation behavior. 

 
Table 4. Parameter Setting of NNOA, OA, and PSO 

Algorithm Parameters 

NNOA N = 5, it = 100, F = 2, B = [0,1], S = random (0, N), Bp = [0,1], A = 0.5, ∅ℎ𝑐,𝑝 = [-1,1] 

OA N = 5, it = 100, B = [0,1], F = 2, S = random (0, N), T = (0,1), Bp = [0,1], A = 0.5, ∅ℎ𝑐,𝑝 = [-1,1] 

PSO N = 5, it = 100, 𝑤 = 0.7, 𝐶1 = 1.5, 𝐶2 = 1.5, 𝑟1 = 1, 𝑟2 = 1 

 

Through extensive experiments, the value of F was set to 2, and A was assigned a value of 0.5. This can 

be observed from the parameter sensitivity graphs shown in Figure 4(a) and Figure 4(b) and Figure 5(a)5b. The 

parameter values for OA refer to the NNOA parameters obtained through many experiments. This approach 

was taken because NNOA is a modification of OA. The PSO parameter values consisting of 𝑤, 𝐶1, and 𝐶2, used 

for the comparison algorithm in this study were inspired by several previous studies [54][55]. 

 

 
(a) 

 
(b) 

Figure 4. Sensitivity analysis of F value 
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(a) 

 
(b) 

Figure 5. Sensitivity analysis of A value 

 

3. RESULT AND DISCUSSION 

3.1. Result 

In this scenario, NNOA is employed to tackle the UC problem of identifying the ON or OFF status of 

each producing unit. Generating units with OFF state are configured to produce electricity at minimum, 

according to the system policy, whereas units with ON status are operated with power output between the 

minimum and highest authorized limits. Table 5 presents the outcomes of the power allocation to satisfy the 

hourly energy requirements. The results provided show that Generator 1 operates non-stop for 24 hours. This 

confirms the role of generator 1 as the main generator that ensures system stability. Meanwhile, Generators 2, 

3, 4, 5, and 6 were activated gradually. Generator 2 operates for 18 hours, generator 3 for 15 hours, generator 

4 for 14 hours, generator 5 for 14 hours, and generator 6 for 17 hours. This startup technique makes the least 

material cost value, but the emission gas produced is still higher than other algorithms. In this study, there is 

no limit on operating hours, so there are generators that can be operated for 24 hours non-stop on.  

Furthermore, to support the validity of the power generation scheduling results shown in Table 5, Figure 

6 presents the convergence graph of the NNOA algorithm. NNOA achieves the best IEED value diminishes 

significantly in the beginning 10 iterations, from about 14,340.00 to close to 14,190.12. In determining the ON 

or OFF status of each generating unit, OFF generators is set to have a minimum power, while units with ON 

status are operated with power output between the minimum and maximum allowed limits. In addition to the 

stability of the solution value, the NNOA is also analyzed in computation time efficiency per iteration, as 

shown in Figure 7. Figure 7 depicts the computing time for each iteration. The graph shows the time 

consumption per iteration of NNOA in seconds for 100 iterations. The initial phase shows high computation 

time fluctuations, with a peak close to 0.0053 seconds, indicating a larger processing load at the beginning, 
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possibly due to the intensive solution space exploration process. After the 30th iteration, however, the 

computation time per iteration is seen to decrease and is more consistent, ranging from 0.0025 to 0.0035 

seconds. Around the 85th iteration, there is an increase which is likely due to the increasingly complicated 

individual evaluation process. The relatively small average calculation time per iteration illustrates the time 

efficiency of NNOA to find convergent solutions quickly and reliably.  

To comprehensively assess the effectiveness of the algorithm, Figure 8 presents a comparison of the 

convergence rates of NNOA and the benchmark algorithms OA and PSO over 100 iterations. Figure 8 provides 

a visualization of the difference in results from OA, NNOA, and PSO. The three curves plot the convergence 

value, the best IEED value of each iteration, at 100 iterations for each algorithm. The PSO algorithm stagnates 

starting in the 15th iteration at a value of 14,404.89. This graph shows that PSO experiences strong bias 

exploitation and falls to local optima. In contrast, OA stagnates at the 45th iteration with the IEED value 

14,373.33, demonstrating a balance between exploration and exploitation. NNOA was able to reach the 

optimum value at less than 10 iterations and quickly stagnated at an optimum value that exceeded the optimum 

value in OA and PSO, which was 14,190.12. The visual study in Figure 8 served to assist us understand why 

convergence behavior isn't always the same. 

 
Table 5. Power Generation Schedule for Each Unit Over 24 Hours 

Hour Demand 
Power Generation (MW) 

Operational Cost ($/hr) Emission Cost(kg/hr) 
1 2 3 4 5 6 

1 130 63.01 20.00 15.00 10.00 10.00 12.00 317.55 150.90 

2 140 73.01 20.00 15.00 10.00 10.00 12.00 342.65 157.03 

3 150 83.01 20.00 15.00 10.00 10.00 12.00 368.50 165.69 
4 160 60.82 20.00 26.07 19.30 10.00 23.82 430.17 181.35 

5 180 98.33 34.68 15.00 10.00 10.00 12.00 449.29 198.43 

6 200 133.01 20.00 15.00 10.00 10.00 12.00 509.00 246.78 
7 220 81.65 52.81 15.00 26.56 24.03 19.96 607.29 247.04 

8 250 158.02 27.73 15.00 19.19 10.00 20.07 669.08 332.31 

9 300 156.04 58.99 21.47 19.19 21.57 22.73 840.85 397.67 

10 330 137.74 66.79 31.79 35.00 30.00 28.68 979.70 429.31 

11 360 194.38 37.96 46.63 27.68 26.46 26.90 1096.73 556.00 

12 400 177.60 80.00 44.72 34.93 22.73 40.00 1260.20 617.70 
13 420 200.00 69.34 48.98 35.00 30.00 36.68 1334.65 683.91 

14 410 177.12 80.00 50.00 35.00 30.00 37.87 1316.22 636.26 

15 390 154.99 80.00 50.00 35.00 30.00 40.00 1254.93 572.48 
16 370 166.07 80.00 33.79 35.00 30.00 25.14 1120.52 542.44 

17 340 166.47 73.89 23.68 30.74 17.31 27.90 990.96 488.39 

18 310 174.54 40.23 27.64 26.56 26.29 14.75 875.62 435.40 
19 280 96.76 79.41 28.86 33.01 18.59 23.35 823.51 356.76 

20 250 118.21 38.93 26.65 21.62 13.42 31.18 691.41 284.89 

21 220 127.59 20.00 25.18 11.77 10.00 25.47 587.71 260.61 
22 180 108.06 24.95 15.00 10.00 10.00 12.00 449.11 202.40 

23 150 77.37 20.00 18.00 10.00 12.64 12.00 372.43 164.86 

24 130 53.61 29.40 15.00 10.00 10.00 12.00 319.21 155.77 

Total 18,007.28 8,464.39 

 

 
Figure 6. NNOA Convergence Plot 
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Figure 7. Time consumption of NNOA 

 

 
Figure 8. Comparison of OA, NNOA, and PSO convergence plot in 100 iterations 

 

To get a better idea of how well the algorithms compare, a number of important metrics were chosen to 

be investigated in more detail. The optimum value, mean value, standard deviation, and computation time were 

chosen as indicators to evaluate the algorithm's performance. In the context of IEED issue solving, the 

minimum value indicates that the algorithm solutions are of superior quality. Similarly, a lower mean value 

represents a more thorough examination of a more robust algorithm, and a lower standard deviation indicates 

greater algorithmic stability. An algorithm that meets all three characteristics is a fantastic choice. However, 

obtaining such ideal standards is too difficult because each algorithm has different performance priorities 

[27],[56]. Additionally, to offer a more explicit visual illustration of these performance measures. Figure 9 

shows a visual representation of the results for the IEED value optimization metrics from the UC cases solved 

with OA, NNOA, and PSO. The boxplot complements the visualization of the metrics given in Table 6. 

Although Table 6 shows that NNOA has the highest numerical standard deviation (22.2062), the boxplot above 

displays a relatively narrow Inter Quartile Range (IQR) box. This boxplot illustrates that the first and third 

quartiles of the NNOA optimization results are concentrated near its optimal median. This indicates strong 

exploitation or intensification capability. It suggests that NNOA is consistently able to focus its solutions 

around the optimal value. The presence of outliers that lie far from the central values explains the relatively 

high standard deviation of NNOA. In several executions, NNOA produced results that deviated significantly 

from the mean.  

To assess the validity of the algorithms for solving UC, a test of the converged values from three distinct 

techniques was performed based on the outcomes of a single run. To ensure the optimization results by the 

three algorithms, 10 times and 30 runs were conducted, and then the average results were calculated. Figure 10 

and Figure 11 show the results of the average convergence value of the OA, NNOA, and PSO algorithms for 

100 iterations. From these graphs, it is evident that the NNOA algorithm continues to exhibit superior 

performance with the lowest average convergence value, followed by OA and PSO. This result reinforces the 

finding that NNOA is more reliable and consistent in finding optimal solutions than OA and PSO algorithms, 
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even after being tested in a multi-running scenario. As an additional confirmation of the performance 

differences among NNOA, OA, and PSO, the Wilcoxon rank-sum test was conducted using a significance level 

of 0.05 [57][58]. Two parameters, 𝜌 and h, serve as indicators of the test results. Two algorithms are considered 

significantly different if 𝜌 < 0.05 or h = 1 is accepted, and not significantly different if 𝜌 > 0.05  or h = 0 is 

accepted. Table 7 shows the results of The Wilcoxon rank-sum test among OA, NNOA, and PSO based on 

data obtained from 30 independent runs. 

 
Table 6. Comparative Result of Algorithms 

Algorithm 
Total Operational 

Cost ($/hr) 

Total Emission 

(kg/hr) 

Best 

IEED 

Mean Best 

IEED 

Standard 

Deviation 

Total Computation 

Time (second) 

OA 18,353 8,403.80 14,373.33 14,385.59 17.7560 0.39822 
NNOA 18,007 8,464.40 14,190.12 14,195.03 22.2062 0.32819 

PSO 18,554 8,480.60 14,404.89 14,412.49 16.1986 0.18602 

 

 
Figure 9. Boxplot of IEED Value Across Algorithms 

 

 
Figure 10. Average Convergence Performance of OA, NNOA, and PSO Algorithms over 10 Independent Runs 

 

 
Figure 11. Average Convergence Performance of OA, NNOA, and PSO Algorithms over 30 Independent Runs 
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Table 7. Outcomes of Wilcoxon’s rank sum test 
Algorithm 𝝆 − 𝐯𝐚𝐥𝐮𝐞 h Conclusion 

OA vs NNOA 0.0053 1 Significantly difference 

OA vs PSO 0.0015 1 Significantly difference 
NNOA vs PSO 0.7655 0 Not significantly different 

 

3.2. DISCUSSION 

The main advantage of NNOA is that it is able to achieve the most optimal IEED value compared to OA 

and PSO. A significant reduction in total cost is achieved by the early 10th iteration as shown the Figure 6. 

This shows the ability of efficient and effective initial exploration in identifying the optimal solution faster 

than OA and PSO based on the amount of iteration. In addition to solution quality, it is essential to assess the 

time efficiency of NNOA. The optimal IEED value attained by NNOA is 14,190.12, while the highest average 

value recorded is 14,195.03 across 100 iterations. The results presented are markedly lower than those achieved 

by OA, which yielded a maximum IEED of 14,373.33 and an average of 14,385.59, as well as PSO, which 

recorded a maximum IEED of 14,404.89, and an average of 14,412.49. This result indicates that NNOA is 

more effective in identifying optimal solutions that achieve the best balance between fuel costs and emissions. 

NNOA demonstrated a substantial reduction in the IEED value relative to the OA and PSO algorithms, with 

an average decrease of 1.33% compared to OA and 1.51% compared to PSO. NNOA also found its convergence 

point in 10 iterations, while OA took 35 iterations. It means that NNOA successfully accelerated convergence 

by 71.4% to OA.  

However, a drawback of the NNOA is its total computation time of 0.32819 seconds, which is longer than 

the PSO's time of 0.18602 seconds. This difference occurs because NNOA has a larger computational load 

than the PSO algorithm. This is especially apparent when comparing the rapidity of PSO, frequently ascribed 

to its gradient-like updates, with the more profound metaheuristic investigation of NNOA. The relatively 

straightforward updating rules of PSO provide expedited computation per iteration, resulting in reduced total 

execution time. Nonetheless, this enhanced solution quality entails specific performance compromises, 

especially regarding computational speed and solution consistency, which are typical in metaheuristic 

optimization. 

Although NNOA shows superiority in solution quality, there is an observation regarding standard 

deviation, which is an indicator of performance consistency. Compared to OA (17.7560) and PSO (16.1986), 

NNOA has the highest standard deviation of 22.2062. In general, a lower standard deviation may indicate that 

the results obtained are more consistent across executions [55]. In this case, the larger variance in NNOA may 

indicate that PSO and OA show more consistent performance from one execution to the next. The higher 

variability in NNOA can be attributed to the more aggressive exploration phase. The velocity update model, 

which is inspired by the Doppler effect and integrates a non-linear exponential function, could potentially be 

one of the factors contributing to the more dynamic character of the exploration.  

Upon closer examination, the notably low mean IEED score of 14,195.03 is accompanied by a standard 

deviation of 22.2062, which remains respectable and competitive. The observed fluctuation is insignificant 

relative to the magnitude of the mean value itself. Thus, NNOA's greater standard deviation seems justified, 

considering its enhanced capacity to attain a higher overall IEED solution quality.  

The architectural design of NNOA plays a crucial role in achieving these improved outcomes. The 

integration of the Doppler Effect mechanism is responsible for NNOA's better performance. This feature allows 

search agents to dynamically detect the distance and movement of optimal regions in the solution space. As a 

result, NNOA improves its exploration capability, allowing it to avoid local optimums and retain solution 

variety throughout the optimization process. These enhancements are very useful in addressing difficult 

problems such as IEED, which have several constraints and nonlinear features. 

The Wilcoxon rank-sum test outcomes indicate that OA and NNOA produce a 𝜌 value of 0.0053. This 

value is less than 0.05 as a significance threshold. This finding indicates that there is a significant difference 

between the performance of OA and NNOA, the modification algorithm. Practically, the evidence supports 

that modifying the behavior of orcas through the Doppler navigation system in NNOA results in better IEED 

performance than conventional OA. In contrast, the test result between NNOA and PSO shows a 𝜌-value of 

0.7655, which is greater than 0.05, so there is no statistically significant difference between the two. The result 

indicates that although NNOA has an advantage in terms of less IEED value than PSO, the overall performance 

of PSO and NNOA is still in a tie, especially in the case of small-medium-scale UC 

The proposed NNOA was evaluated against established and often utilized metaheuristic optimization 

techniques, including PSO.  In a study conducted by Alsowaidi et al. [9], PSO successfully optimized the 

scheduling of 10 generating units, considering variations in spinning reserves. Conversely, NNOA was 
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executed inside a standardized framework, specifically including six generator units in the IEEE 30-bus system, 

with the dual aims of optimizing economic efficiency of generator units and reducing gas emissions. The 

fundamental difference between these two techniques resides in their optimization goals and intricacy.  

Alsowaidi's research on PSO highlights economic efficiency through the application of spinning reserve 

limitations, although it overlooks environmental factors. NNOA tackles a multi-objective challenge by 

simultaneously reducing operational costs and exhaust pollutants. NNOA provides advantages in solution 

quality; yet, it is hindered by a comparatively extended computation time comparing to PSO. This results from 

the heightened complexity in the computations and Doppler effect-based calculations within NNOA.  

Therefore, subsequent development must concentrate on optimizing the algorithmic framework to proficiently 

tackle multi-objective challenges with improved computing efficiency. 

Generally, no singular algorithm can simultaneously attain optimal convergence and time efficiency 

across all optimization contexts. This is due to the natural exploration and exploitation process to obtain the 

global optimal solution [59][60]. Guven et al. (2024) [61] also demonstrated that no single technique is 

unequivocally superior in all dimensions, instead, each possesses a relative advantage contingent upon the 

prioritized optimization aim. This confirms the findings of the study, indicating that NNOA excels in cost 

efficiency, OA maintains a balance between low emissions and stability, whilst PSO offers benefits in speed 

and result consistency. Consequently, algorithm selection must be customized according to the prioritization 

of optimization targets. 

 

4. CONCLUSIONS 

This research contributes to modify OA so that it more accurately represents the navigation behavior of 

orca whales, which is expected to improve the IEED value in the UC problem, called NNOA. The result shows 

that the NNOA method has significant advantages in solving the UC problem with the IEED objective function. 

Adapting OA by incorporating the concept of orca navigation behavior while hunting prey through the Doppler 

effect, NNOA shows convergence around 10 initial iterations with the least IEED value. This shows the orca's 

competitive initial exploration capacity compared to other algorithms (OA and PSO) and strong exploitation 

stage. NNOA achieved the ideal IEED value of 14,190.12, surpassing OA (14,373.33) and PSO (14,404.89), 

meaning that NNOA managed to reduce the IEED value by 1.33% relative to OA and 1.51% compared to PSO. 

NNOA demonstrated remarkable consistency, achieving optimal IEED values at both 10 and 30 trials. NNOA 

contributes to grid sustainability by minimizing IEED values, which reduce operational costs and harmful 

emissions and so support decarbonization efforts.  This position is becoming increasingly important as power 

systems include more renewable energy sources, and intelligent scheduling algorithms such as NNOA help 

preserve grid dependability while permitting carbon reduction targets. However, NNOA continues to encounter 

numerous issues that require resolution. This study identified limitations due to NNOA's prolonged 

computation time and greater standard deviation compared to OA and PSO. This could be because the Doppler 

effect calculation metaphor formula is complex and uses a non-linear formula in the form of an exponential 

function, which makes the calculations harder. Nevertheless, while exhibiting a greater standard deviation than 

OA and PSO, it stays competitive due to the most favorable IEED results. Given the benefits of PSO in 

computational efficiency and the least standard deviation of OA and NNOA, it is recommended to integrate 

NNOA with PSO in the future to develop a hybrid algorithm that optimizes solution quality, convergence rate, 

and standard deviation reduction. Based on the findings in this study, future research is recommended to test 

NNOA on larger datasets, such as IEEE 118-bus systems or actual power systems such as multi-area grids. 

Testing on systems integrated with renewable energy sources such as wind and solar is also quite interesting 

to further identify the benefits of NNOA. Considering that the hourly power demand is still static, it is also 

worth testing NNOA on dynamic power demand cases with various generation limitation scenarios to assess 

the robustness of the algorithm. NNOA facilitates the shift to a fuel-efficient electricity system. 
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