
Buletin Ilmiah Sarjana Teknik Elektro 

Vol. 7, No. 3, September 2025, pp. 468-480 

ISSN: 2685-9572, DOI: 10.12928/biste.v7i3.13813  468 

  

Journal Website: http://journal2.uad.ac.id/index.php/biste Email: biste@ee.uad.ac.id 

Temperature-Controlled Process for Recycled Waste Tire 

Polymer-Polymer Composites: An Innovative and Sustainable 

Solution for Marine Fender Applications 
 

Ali Habel Zaibel 1, Safaa A. S. Almtori 2, Raheem Al-Sabur 3, Abdel-Nasser Sharkawy 4,5 
1 Department of Mechanical Engineering, University of Basrah, Basrah 61001, Iraq 

2 Department of Materials Engineering, University of Basrah, Basrah 61001, Iraq 
3 Department of Mechanical Engineering, University of Basrah, Basrah 61001, Iraq 

4 Mechanical Engineering Department, Faculty of Engineering, South Valley University, Qena 83523, Egypt 
5 Mechanical Engineering Department, College of Engineering, Fahad Bin Sultan University, Tabuk 47721, Saudi Arabia 

 

ARTICLE INFORMATION  ABSTRACT  

Article History: 

Received 30 June 2025 

Revised 10 July 2025 

Accepted 05 September 2025 

 

 

Marine fender prototypes play a critical role in protecting the ship and the 

berthing infrastructure from damage during docking. Recycling waste 

polymers, such as waste tires, into composite materials for marine fenders, 

can contribute to environmental sustainability and resource conservation. 

In marine Fender applications, compression testing often plays a crucial 

role; we should also test factors such as elasticity, stiffness, and hardness. 

In this study, pressure and hardness were selected, and Young's modulus 

was calculated for two types of composite materials: one manufactured 

from waste tires and high-density polyethylene (HDPE) and the other from 

waste tires and room-temperature vulcanized (RTV) silicone both in 

varying proportions. These types of materials were produced using a press 

machine equipped with a PID controller, which enables the adjustment of 

the temperature to a desired value, thereby achieving the best results. 

Prototypes containing 85% waste tire with 15% HDPE and 50% waste tire 

with 50% RTV silicone showed superior energy absorption and durability 

for marine fender applications. Despite achieving satisfactory hardness 

and hardness values, the waste tire and RTV silicone composite did not 

exceed those of the waste tire and HDPE composites, which had Young's 

modulus and Shore hardness values of 1.74 MPa and 56.6, respectively. 

The compression test showed that the waste tire and RTV silicone 

composites achieved higher values, surpassing 1990 kN. The findings 

provide a crucial foundation for utilizing waste composite materials in 

marine fender production.  
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1. INTRODUCTION 

Ships and ports are considered the lifeline and main link between manufacturers and consumers. Ship 

berthing requirements are regarded as the most critical factor in port quality. There is no doubt that marine 

fenders represent the fundamental element of protection when docking ships [1]. Researchers find that fenders 

absorb shocks between ships, small boats, and docks or vessels [2]. Historically, people crafted fenders from 

rope in diverse patterns and shapes, often repurposing damaged lines that were no longer safe for mooring 

boats or carrying loads. Then, in boats, it developed to the point where it became an air-filled ball or a device 

in various shapes and materials used to absorb the kinetic energy of a ship. Later, developers divided marine 

fenders into two main sections: ship-to-berth (STB) fenders and ship-to-ship (STS) fenders [3]. It also varied 

according to usage: cylindrical fenders, corner fenders, arch fenders, cone fenders, square fenders, D fenders, 

keyhole fenders, cone fenders, pneumatic fenders, hydro-pneumatic fenders, foam elastomer fenders, tugboat 

fenders, solid rubber fenders, and floating rubber fenders. 

Traditional marine fenders faced various difficulties, most notably the harsh marine environments, the 

recent high rates of corrosion, and the limitations of the fender’s lifespan [4]. These challenges, combined with 

the significant damage to marine fenders, make them one of the weak elements of sustainable development. 

The quality of the product and the possibility of recycling it is considered two decisive factors in the global 

trend towards sustainability, which contributes to achieving the requirements of the Paris Climate Agreement. 

This pressure has generated an increasing need to develop new materials for marine fenders that can withstand 

these challenges and provide better performance [5]. The last decade has seen a growing application of 

composite materials, particularly in areas such as robotics [6], medical applications [7], military applications 

[8], and marine applications [9], including the marine fender industry [10]. New composite materials have not 

been the only growing applications; other topics have incorporated recycled composite materials. The recycling 

of polymeric materials has advanced significantly, leading to its utilization in unconventional applications like 

bricks and the creation of waste polymer-polymer matrix composites [11]-[13].  

Rubber is considered the main ingredient in producing many types of marine fenders. However, rubber is 

a complex material to recycle, as it is not biodegradable and has an energy-intensive consumption [14]. The 

global annual generation of waste tires is approximately 4 billion tons [15].  In truck tires, the percentages of 

natural and synthetic rubber are 27% and 14%, respectively, while these ratios differ in passenger tires [16]. 

Tires also incorporate varying amounts of carbon black, steel, accelerators, fillers, fabric, and antiozonants. 

Tire waste mounds frequently serve as breeding sites for insects and vermin, such as mosquitoes, which spread 

infectious and unidentified diseases. Landfilling used tires takes up a significant portion of priceless land [17]. 

The scribed tires can be recycled/reused as a new rubber product in civil or industrial applications, where they 

can be used as gaskets, wheel chocks, playgrounds, doormats, sports surfacing, etc [18]. 

The use of tires and waste polymers to create different composite materials—including those for marine 

fenders—has gained popularity in recent years. These recycled materials are a viable substitute for traditional 

fender materials because they provide several benefits over conventional materials, including increased 

durability, lower cost, and less environmental effect [19]. Room temperature vulcanized (RTV) silicone 

rubbers are widely used in numerous applications due to their innocuity, insulative, resistance to elements, and 

wear resistance [20]. These properties make RTV silicone an attractive material for marine fender pr©ototypes. 

High-density polyethylene (HDPE) is another promising material for this application, as it is lightweight and 

possesses good tensile strength, while its counterpart, low-density polyethylene (LDPE), exhibits good 

chemical resistance [21]. 

The production of marine fenders typically involves selecting suitable materials, designing the fender's 

shape and size, and employing an appropriate manufacturing process. The development of marine fender 

production has evolved significantly over the past decades, despite its long-standing use in the marine industry. 

Design criteria were first compiled by TT Lee in the 1960s [22]. He stated that an effective fender design 

requires optimising key performance parameters, such as energy absorption, peak reaction forces, and contact 

pressure distribution. Later, H. Agerschou et al. [23] introduced more progressive design ideas encompassing 

various design aspects, risks, and economic considerations and found that the straight and vertical hull sides 

are essential in fender design. JW Gaythwaite [24] conducted a study on marine facilities and methods of 

berthing, mooring, and repairing vessels for ships. Moreover, Gaythwaite reported that berthing loads are 

important in marine fender design. R Iversen et al. [25] also investigated berthing velocities for designing 

fender systems and accurate monitoring of berthing velocity helps minimize the impact load on marine fenders, 

improving their operational efficiency. Numerous other studies have focused on designing marine fenders 

using raw and non-recycled materials. In fender piling applications, the filling material serves to bond the outer 

layers with the internal inserts, enhancing the structure’s ability to absorb impact forces [26][27]. Several 
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barriers still limit the widespread use of composite pilings as load-bearing elements in fender applications 

[26][27].  

In today's eco-conscious world, numerous 100% recycled marine products are utilized [28], such as 

recycled plastic lumber, plastic floats and buoys, plastic furniture, and fishing nets and ropes. Using recycled 

rubber fenders aligns with this sustainable trend, further emphasizing the value of recycling and repurpose 

materials in the marine industry. Research is scarce regarding developing marine fenders made from recycled 

materials or plastic waste. However, several brands claim that their marine fender products are either entirely 

or partially manufactured using recycled materials or plastic waste, such as Lankhorst KLP®-PE 

(www.lankhorst-recycling.com) [29] AIMPLAS (https://www.aimplas.net) [30], and ECOCHOICE 

(https://ecochoice.co.uk/recycled-plastic-fenders), which is highlighting the growing interest in sustainable 

solutions within the industry. 

While many studies have explored the use of recycled polymers in construction and transportation, there 

has been little research specifically assessing their viability and mechanical performance in marine fender 

systems. Most existing studies do not thoroughly analyze either how recycled composites behave under impact 

and compression or overlook how these materials meet the unique demands of marine environments. The 

present study addresses the research gap by investigating plastic waste recycling in producing polymer-polymer 

composites for marine fenders. The novelty of our work lies in developing and characterizing two types of 

recycled specimens, consisting of waste tires combined with either RTV silicon or high-density polyethylene 

(HDPE). By conducting a series of mechanical tests, including Hardness, elastic modulus, and compression 

tests, we aim to evaluate the performance of these composite materials and assess their suitability as marine 

fenders. Our findings can potentially contribute to developing more sustainable and cost-effective solutions for 

marine fender applications, ultimately reducing the environmental impact of fender manufacturing and waste 

disposal. 

 

2. EXPERIMENTAL WORK 

This section consists of three subsections. The first subsection presents the press machine, which is used 

for the manufacturing of composite materials. Additionally, there was a brief discussion about the PID 

temperature control that the press machine is equipped with. The second subsection shows the preparation of 

the waste tire and RTV silicone composites. The third subsection shows the preparation of waste tires and 

HDPE composites. 

 

2.1. Press Machine Equipped by PID Temperature Control 

This section covers the experimental methods for creating two polymer-polymer composite specimens 

from recycled scrap tires. The function of PID temperature control is to adjust the actual temperature and 

maintain it at the set point for the desired temperature. PID temperature control is essential in thermal press 

machines for ensuring high performance and consistency in heat-driven processes. PID controllers maintain 

exact temperature setpoints (±5°C or better) [31][32], eliminating harmful fluctuations that could compromise 

material properties in recycled polymer composites, such as waste tires and HDPE.  Figure 1 illustrates that 

the control signal generated by this type of controller is directly related to the error signal, which is the 

difference between the setpoint and the actual temperature. The related equations are presented as follows 

[33][34]. Where, 𝐾𝑝 is the proportional gain of the PID controller, 𝐾𝑖 is the integral gain of the PID controller, 

and 𝐾𝑑 is the derivative gain of the PID controller.   

 𝐸𝑟𝑟𝑜𝑟 =  𝑒(𝑡) =  𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡 − 𝐴𝑐𝑡𝑢𝑎𝑙 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (1) 

 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑠𝑖𝑔𝑛𝑎𝑙 =  𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒𝑑𝑡 + 𝐾𝑑

𝑑𝑒

𝑑𝑡
 (2) 

Therefore, using PID control can enhance the system's performance by adjusting the actual temperature 

and maintaining it at the desired set point. The press machine is integrated with PID control, and its gains are 

tuned automatically. We do our best to find the method used for tuning the PID control gains on this press 

machine, but the information about this issue in the machine's catalogue is missing. However, the method used 

for gain tuning is the Ziegler-Nichols method, which is the most famous one. Table 1 indicates the function of 

the PID controller Gains used in this study. The electronic circuit of PID control can be presented by an 

operational amplifier (op amp), as in Figure 2. 

http://www.lankhorst-recycling.com/
https://www.aimplas.net/
https://ecochoice.co.uk/recycled-plastic-fenders
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Figure 1. PID control for the adjustment of the temperature 

 
Table 1. The main functions of the PID controller gain 

Gain Function 

Proportional Gain 𝐾𝑝 
Increasing the value of this gain can minimize the period of the transient response stage, which is 

unsteady. In other words, reaching a steady-state condition will be faster. In addition, the error will be 

reduced but not eliminated. 

Integral Gain 𝐾𝑖 
Increasing the value of this gain can also minimize the period of transient response stage. In addition, the 

error will be eliminated and be very close to zero. 

Derivative Gain  𝐾𝑑 
This gain can improve the performance of the system in terms of stability and damping. In another 

meaning, the overshoots and oscillations can be reduced. 

 

 
Figure 2. The electronic circuit of the PID controller using operational amplifier [35] 

 

By analyzing this electrical circuit, the PID controller gains are obtained as follows: 

 Proportional gain 𝐾𝑝 =
Rf

Ri
+

Ci

Cf
 

 

 Integral gain 𝐾𝑖 =
1

RiCf
  

 Derivative Gain 𝐾𝑑 = RfCi  

If the values of the capacitors and resistors are chosen well and correctly, a high-performance controller will 

be achieved.   

The composites are made from waste tires and room-temperature vulcanizing (RTV) silicone. The 

specimens were fabricated using a press machine, as shown in Figure 3. Figure 3 illustrates the press machine, 

including the heating source (Figure 3(a)), a schematic drawing of the press machine (Figure 3(b)), and the 

electrical wire connections within the press machine (Figure 3(c)). The press machine is equipped with a PID 

temperature control adjustment. Through experiments, rubber has been identified as a critical component 

because it requires a high temperature to reach the softening state necessary for tire production. Experiments 

have shown that the temperature can be achieved within the range of 180-200 degrees. Temperatures above 

this limit will lead to rubber deterioration [36]. Since the approximate oxidation onset temperatures of pure 

HDPE and rubber are ~200–250°C and 150–200°C, respectively, the temperature is set at 180–220°C for the 
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waste rubber and HDPE mixture to overcome the oxidation process [37][38]. Therefore, the applied PID system 

was designed to control this temperature range for the thermal press.  

Once the molding and curing were complete, the composites went through standard post-processing. The 

HDPE-based samples were left to air-cool at room temperature - this gradual cooling helped prevent thermal 

stress and kept the material's structure intact. With the RTV silicone composites, nothing extra was required 

beyond the standard 24-hour curing time at room temperature. To ensure the homogeneity of the mixture, the 

waste tire granules and polymer (HDPE or RTV silicone) were manually pre-mixed for 5–10 minutes to achieve 

even distribution before being placed in the mold. During the preparation of the composite materials, all safety 

measures were implemented, including laboratory ventilation necessary to remove vapors resulting from the 

melting of polymer materials. In addition, protective clothing and heat-resistant gloves were worn. 

 

 
Figure 3. a) The press machine with the heating source, b) Schematic drawing of the press machine, and c) the electrical 

wire connections in the press machine 

 

2.2. Waste Tire and RTV Silicone Composites Preparation  

Previous studies have described the preparation of waste tire and RTV silicone composite samples as the 

ideal method for such applications. Proper mould preparation is essential for manufacturing composite 

materials, whether raw or recycled. An aluminum mould weighing approximately 1.5 kg was prepared to 

prepare the samples, which had fixed dimensions of 1.5 x 3 x 6 cm. The mold was covered with aluminum foil 

to facilitate the handling of the samples, making them ready. Use a sensitive digital weighing scale to measure 

the required proportions of each waste tire and raw material made from RTV silicone adhesive. Then, the 

samples will be installed through layers of waste tire and RTV silicone adhesive in preparation for heating and 

pressing them in the compression machine. The sample weighed 235 g. Finally, the mould with the prepared 
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specimen was placed in a high-temperature heat press machine (H400-15, ASONE Company, Japan) and 

subjected to pressure. The machine offers hot pressing up to 400°C with PID temperature control, enabling 

precise temperature adjustment in the range of 180-200°C. The temperature range of 180–200°C was selected 

for RTV silicone due to its optimal thermal stability and curing behavior. Within this range, the material 

maintains structural integrity while ensuring strong adhesion to waste rubber particles, preventing early 

degradation [20]. The hot plate dimensions of the thermal press are 200 x 150 mm, and the operation stroke is 

0-90 mm, with a maximum pressing capacity of 15 tons. Several auxiliary instruments, including a digital 

balance, and vernier caliper, were used. Aluminum foil paper can prevent oxygen and light rays from spoiling 

the recycled product [39]. 

 A waste tire shredder was used to prepare waste tire samples measuring 50 mm x 50 mm, and then a 

stainless-steel grinder was used to obtain smaller granules. These pieces were then processed using a stainless-

steel grinder, which reduced them to granules with an average particle size ranging between 2–5 mm.  The 

resulting samples were mixed with an RTV silicone adhesive, which can withstand temperatures higher than 

200°C. For composites containing RTV silicone, a curing time of 24 hours at room temperature was applied. 

Fossil paper was used to separate the samples from the mould. Figure 4 illustrates the procedures for the waste 

tire and RTV silicone composite. The resulting samples were subjected to a high-temperature heat press 

machine to produce the required specimens. The prepared specimens were made using the following ratio 

indicated in Table 3. 

 

 
Figure 4. Waste tire and RTV silicone composites procedures 

 
Table 3. Composition of the waste tire and RTV silicone specimens. 

Samples Composition ratio (wt%) 

1 10% waste tire + 90% RTV silicone 

2 20% waste tire + 80% RTV silicone 
3 30% waste tire + 70% RTV silicone 

4 40% waste tire + 60% RTV silicone 
5 50% waste tire + 50% RTV silicone 

6 75% waste tire + 25% RTV silicone 

7 85% waste tire + 15% RTV silicone 

 

2.3. Waste Tire and HDPE Composites Preparation  

The method for preparing waste tire and HDPE composites is not significantly different from that 

described for waste tires and RTV silicone composites. The same heat press with a PID unit was used to prevent 

rubber deterioration and HDPE oxidation. The same mould and foil paper were also used, and the sample 

dimensions were identical to those of the waste tires and RTV silicone composites. The raw materials, waste 
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tire and HDPE, were weighed, and the waste tire material was brushed into the mould in layers, with HDPE 

adhesive applied between the layers. The mould was then placed in the high-temperature heat press machine 

and subjected to a temperature of 180-200°C for one hour. The sample results are shown in Figure 5. The 

prepared specimens were made using the following ratio indicated in Table 4. 

 

 
Figure 5. Marine Fender prototypes of waste tire and HDPE composites 

 
Table 4. Composition of the waste tire and HDPE specimens. 

Samples Composition ratio (wt%) 

1 20% waste tire + 80% HDPE 
2 40% waste tire + 60% HDPE 

3 50% waste tire + 50% HDPE 

4 75% waste tire + 25% HDPE 
5 85% waste tire + 15% HDPE 

6 90% waste tire + 10% HDPE 

 

3. RESULTS AND DISCUSSION  

This section presents the results from the compression and hardness tests for the two composite materials. 

Furthermore, we present the tested specimens' modulus of elasticity. Pressure and hardness were selected as 

the primary testing methods due to their direct relevance to the operational performance of marine fenders, 

where impact resistance and surface durability are critical.  

 

3.1. Compression Test 

The compression tests revealed how effectively the material could absorb impacts, essential for marine 

fenders facing constant berthing loads. A compression testing machine (Digitec MATEST) was used to 

investigate the load capacity of the waste tire and polymer composite specimens. The test findings provided 

important information about the composites' compressive strength and potential use as marine fenders. Table 

5 shows the compression load values for selected specimens from both groups. As indicated in Figure 6, the 

compression test results show several trends. The waste tire and RTV silicone composites deliver a generally 

more elevated compression load capability than the waste tire and HDPE composites, indicating that the waste 

tire and RTV silicone composite give better resistance to deformation. The compression load capacity increases 

by increasing waste tire content by up to 75% for the waste tire and RTV silicone composites. The current 

results provide the best balance between stiffness and compressive load resistance. Moreover, the waste tire 

and HDPE composite exhibit a more consistent trend, with the compression load capacity increasing slightly 

as waste tire content increases. 

 
Table 5. Compression load of the specimens 
Sample No Specimen Components (wt%) 

S1 50% waste tire + 50% RTV silicone 

S2 65% waste tire + 35% RTV silicone 

S3 75% waste tire + 25% RTV silicone 
S4 90% waste tire + 10% RTV silicone 

S5 50% waste tire + 50% HDPE 

S6 75% waste tire + 25% HDPE 
S7 85% waste tire + 15% HDPE 

S8 90% waste tire + 10% HDPE 
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Figure 6. Compression load variation according to the specimens 

 

3.2. Hardness Test 

Hardness testing assessed surface resistance to deformation, indicating how well the fenders would 

withstand years of abrasion from vessel hulls. Plastics and polymer materials differ because their hardness is 

not measured by traditional methods such as the Burnell, Rockwell, and Vickers hardness scales but rather by 

more specialized methods. The hardness of the most flexible rubber materials is often measured on a scale 

called Shore A, which ranges from 0 to 100. When hard rubbers are semi-rigid, they are measured by the Shore 

D Hardness Scale. It helps engineers and designers select the most appropriate material for specific 

applications, such as seals, gaskets, tires, and protective coatings. The two groups of composite specimens 

were then subjected to various mechanical tests, including Shore A and Shore D hardness tests, elastic modulus 

calculations, and compression tests, to assess their suitability as marine fenders. Both Shore A and Shore D 

hardness tests are critical tools for understanding the mechanical behavior and durability of recycled 

rubber/HDPE composites [40][41]. These tests can provide insights into blend behavior and help ensure 

material reliability. This study used Durometer Hardness Tester LAC-YJ to measure specimens' Hardness, as 

shown in Figure 7. Table 6 presents the results of the Shore hardness tests for both groups of specimens, where 

each ratio had four measurements (R1-R4). The average value of these measurements is reported as the R 

average.  

It can be observed that the Shore hardness values of the waste tire and HDPE composite specimens 

(samples 1-4) were generally higher compared to the waste tire and RTV silicone composite specimens 

(samples 5-7), indicating that the waste tire and HDPE composites may have higher resistance to indentation 

and better mechanical performance as marine fenders. It can also be seen that the hardness values of the waste 

tire and HDPE composites tend to increase with an increase in the waste tire content, except for the 90% waste 

tire + 10% HDPE composition. The hardness values for the waste tire and RTV silicone composites show a 

less consistent trend. The perfect balance between the components of RTV silicone and waste tire gave high 

hardness results, which was clearly demonstrated by using an equal ratio (50%:50%). 

 

 
Figure 7. Shore Hardness apparatus with fender prototype setup 
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Table 6. Hardness of selected specimens and average values 
Samples (wt%) Shore Type R1 R2 R3 R4 R mean 

50% waste tire + 50% HDPE D 76 79 72 70 74.25 

75% waste tire + 25% HDPE D 85 77 76 82 80.00 

85% waste tire + 15% HDPE D 83 84 80 85 83.00 
90% waste tire + 10% HDPE D 76 81 78 83 79.50 

40% waste tire + 60% RTV silicon A 76 79 73 75 75.75 

50% waste tire + 50% RTV silicon A 92 75 100 75 85.50 
85% waste tire + 15% RTV silicon A 70 75 73 80 74.50 

 

3.3. Modulus of Elasticity Calculation 

The modulus of elasticity (Young's modulus) is critical for the fenders because it influences their stiffness 

and effectively absorbs energy while minimizing the risk of permanent deformation or material failure.  The 

modulus of elasticity (E) of the marine fender prototypes in this work is determined using an empirical equation 

based on Shore hardness (S) [42][43]. This method provides a practical approach when direct tensile testing is 

not feasible. The correlation relates Shore hardness to Young’s modulus through established equations, offering 

an approximate but useful measure of stiffness for comparative analysis. Using the above equation, Figure 8 

shows the calculated modulus of elasticity for the different specimens. The findings show that the specimens 

with more waste tire content had an increased elastic modulus, which implies that a substantial portion of the 

composite material's rigidity is derived from the scrap tire component. Prototypes with higher waste tire content 

(e.g., 85% waste tire + 15% HDPE and 50% waste tire + 50% RTV silicon) may offer superior energy 

absorption and durability in marine fender applications compared to those with lower waste tire contents. 

 E = (0.0981(56 + 7.62336S)) / (0.137505(254 − 2.54S)) (3) 

 

 
Figure 8. Modulus of Elasticity of the tested specimens 

 

4. CONCLUSION AND FUTURE WORK 

Recycling waste polymers—like used tires and HDPE—is crucial for protecting the environment. It also 

helps support a circular economy by transforming waste into useful products with longer lifespans. In the 

current study, two groups of composite materials were prepared from waste tires and high-density polyethylene 

(HDPE) once, and waste tires and room-temperature vulcanized (RTV) silicone were used again as marine 

fenders. The following conclusions can be drawn:  

1. Prototypes containing 85% waste tire with 15% HDPE and 50% waste tire with 50% RTV silicone 

showed superior energy absorption and durability for marine fender applications 

2. The waste tire and HDPE composites exhibit higher Shore hardness (up to 56.6) and Young's modulus 

values (up to 1.74 MPa) compared to the waste tire and RTV silicone composites (Shore hardness up to 

51.8 and Young's modulus up to 1.44 MPa). 
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3. The compression test results indicate that the waste tire and RTV silicone composites generally exhibit a 

higher compression load capacity. 

4. The Shore hardness and compression test results indicate an optimal waste tire content, where a 75% 

waste tire content in the RTV silicone composites gives the highest compression load capacity.  

5. The marine Fender models manufactured in this study were based on the use of recycled materials, which 

contribute to the goals of sustainability locally and internationally. The nature of the use of marine 

fenders, which put them in direct contact with sea or river water, contributes to their adaptation to the 

atmosphere, whether it is extremely hot or extremely cold.  

The recycling of such materials (tires, HDPE, RTV silicone) will be part of sustainability goals (e.g., 

carbon footprint reduction, waste diversion) in the coming years. In addition, the nature of the manufacture of 

these materials, which uses high pressure with high temperatures, starting from room temperature up to 200 °C, 

also contributes to making them more flexible to deal with a wide range of temperatures in use. In-depth 

knowledge of the effect of temperature changes on use could be a proposed focus of future studies. Finaly, 

although the study successfully prepared marine fender prototypes that passed pressure and hardness tests, 

further testing is needed to produce models of marine fenders with realistic dimensions and expose them to 

actual marine conditions. Moreover, researching the long-term wear resistance and calculating the economic 

model for the recycled marine fender would provide suitable ideas for future studies. 
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