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The escalating complexity and pervasive noise in contemporary 

communication systems have increasingly rendered traditional signal 

processing methods insufficient for reliable real-time analysis. This research 

addresses a fundamental void in existing literature by proposing a novel and 

lightweight deep learning framework, primarily centered on Convolutional 

Neural Networks (CNNs) for the joint classification and denoising of 

communication signals. Distinct from prior methodologies that often segregate 

these crucial tasks our model integrates both objectives within a highly 

optimized, unified architecture engineered for ultra-low-latency inference, 

notably achieving a 30–50% reduction in inference time compared to deeper 

CNN-RNN hybrids or Transformer-based architectures. The framework's 

effectiveness was comprehensively evaluated using both synthetic and real-

world datasets, including RadioML2018.01A which encompasses a diverse 

range of modulation schemes and signal-to-noise ratio (SNR) levels. 

Experimental results conclusively demonstrate that the proposed CNN 

achieved an impressive 96.8% classification accuracy significantly enhanced 

signal quality to an average of 22.3 dB SNR, and maintained an average 

processing latency of merely 11.3 ms. These figures consistently demonstrate 

superior performance compared to traditional baselines including FFT, SVM, 

and LSTM. Despite these promising results, the current model was primarily 

trained and evaluated under Additive White Gaussian Noise (AWGN) 

conditions, and future work will explore its generalization to real-world 

scenarios involving multipath fading, Doppler shifts, and dynamic channel 

interference. This study represents a significant leap forward in developing 

robust, efficient, and intelligent solutions essential for next-generation 

communication signal processing, particularly for real-time applications in 

resource-constrained environments.  
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1. INTRODUCTION  

The fusion of artificial intelligence (AI) and telecommunications has opened new frontiers in wireless 

communication, including spectrum sensing, modulation recognition, channel estimation, and anomaly 

detection. However, as the volume and complexity of transmitted signals grow, conventional signal processing 

methods fall short in handling noise and extracting meaningful patterns in real time. This research addresses a 

fundamental gap in the literature: the lack of a unified, high-performance AI model capable of robust 

classification and denoising of real-world signals under low signal-to-noise ratio (SNR) conditions [1]-[3]. 

Instead of depending on the long-term analysis of the signal delivered with various sample windows, the 

weight modification can alternatively be carried out in an unconventional way [4]-[6]. This capability is 

functional when establishing a communication link between base stations (access points) in a secluded channel 

environment, i.e., when several base stations monitor a portable device within a given synchronization window 

[7]. Moreover, the processed AI can be quickly transferred to portable devices., enabling them to function 

equally [8]. Protecting these systems can also be efficiently handled by the AI of the wireless systems [9]-[11]. 

With the increasing dependence on communication through radio transmissions, there is also an increase in 

pressure on bandwidth, whichs often required for an efficient allocation of this natural resource [12][13]. 

Therefore, efforts are focusing on the development of innovative or cognitive radio systems, which can analyze 

their available resources and then adapt their transmission and information acquisition methods [14]-[16]. 

Our primary contribution is the development and evaluation of a novel CNN-based framework designed 

explicitly for noisy and dynamic communication environments. Unlike prior work, which often isolates tasks 

like denoising or modulation classification, our model performs both jointly, enabling enhanced end-to-end 

performance. The potential limitations of integrating CNNs in this context revolve primarily around their 

generalizability and the scope of their evaluation [16]. While the proposed model demonstrates strong 

performance, its current evaluation was primarily conducted under Additive White Gaussian Noise (AWGN) 

conditions. This means its effectiveness in real-world scenarios, which frequently involve more complex 

phenomena such as multipath fading, Doppler shifts, and dynamic channel interference, has not yet been fully 

addressed. Future research is needed to extend evaluations to these challenging environments and validate the 

model's generalizability under such diverse and unpredictable noise profiles. Additionally, while the 

framework is designed to be lightweight and has shown promise for deployment on certain embedded systems 

like NVIDIA Jetson or Xavier, its computational scalability on more ultra-resource-constrained devices or its 

robustness across a wider range of hardware specifications remains an area for further investigation and in-

field testing. The research also does not explicitly detail the model's sensitivity or performance when 

encountering. 

 

2. RELATED WORK AND RESEARCH GAP 

While AI applications in signal processing have been explored in areas such as cognitive radio and 

spectrum management, few works have demonstrated holistic solutions combining classification, noise 

mitigation, and real-time feasibility. Prior studies using FFT and SVM-based methods have offered limited 

generalization in real-world noisy settings. LSTM models improve temporal sensitivity but often suffer from 

high latency and overfitting [17][18]. While convolutional neural networks (CNNs) have gained attention for 

signal classification, most existing research isolates classification and denoising into separate stages. 

Furthermore, many deep learning models are computationally heavy, which limits their practical use in latency-

sensitive systems. A critical gap remains in designing unified architectures that offer both noise robustness and 

real-time performance [19]-[21]. This study addresses this gap by introducing a lightweight CNN model that 

performs joint denoising and classification, optimized for low-latency inference on both desktop GPUs and 

edge AI platforms [18],[22][23]. Our work differentiates itself by integrating denoising and classification 

within a convolutional architecture optimized for parallel processing on GPUs. This enables deployment in 

edge environments, offering a practical, low-latency solution for next-generation networks, including 5G and 

beyond [1],[3],[24]. 

 

3. FUNDAMENTALS 

In recent years, there has been significant interest and advancement in AI, particularly in machine learning 

(ML) techniques, across a wide range of applications. Signal processing is no exception, with several AI-based 

solutions outperforming traditional approaches due to the data-driven capabilities of AI. In telecommunication, 

AI has been employed to develop toolboxes that can analyze communication signals [1]. Similarly, the 

remarkable success of deep learning (DL) techniques has motivated researchers to investigate many innovative 

applications. In the context of artificial intelligence (AI), machine learning (ML) is a key research field because 

it enables intelligent capabilities without requiring hardcoding. Over the past decade, remarkable advancements 
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in AI have enabled the development of applications such as autonomous vehicle systems, computer vision, 

voice recognition, and numerous radio signal processing applications. Moreover, the exceptional combination 

of machine learning (ML) with deep learning (DL), natural language processing (NLP), and reinforcement 

learning (RL) can provide highly intelligent capabilities. Thus, many radio-related tasks can expect better 

performance than human research can provide. The objective of this paper is to present a survey of state-of-

the-art AI solutions for the intelligent processing of radio signals, which can directly analyze the 

communication features (modulation, coding, etc.) of signals and data [5][6]. 

 

3.1. Proposed CNN Architecture and Joint Optimization Mechanism 

This section should be extended to clearly articulate the design rationale behind the chosen Convolutional 

Neural Network architecture. It needs to explain not just the components (e.g., three 1D convolutional layers 

with ReLU, batch normalization, dropout, flattening, dense layers) but also why these specific elements and 

their configuration were selected. A detailed explanation must be provided on how the convolutional layers 

contribute synergistically to both denoising and classification. For instance, early layers could be described as 

primarily focusing on extracting robust features by suppressing noise and learning local patterns within the 

signal while subsequent layers progressively refine these features to enable effective modulation classification. 

The discussion should highlight how the shared feature learning across these layers inherently promotes a 

unified optimization, allowing the network to simultaneously learn to reconstruct clean signals and identify 

their modulation types from potentially noisy inputs. This integrated approach distinguishes the proposed 

model from cascaded systems by ensuring that the features learned for denoising also directly benefit 

classification, and vice versa. 

 

3.2. Joint Loss Function Design, Justification, and Ablation Study 

This subsection must offer a thorough justification for the selection of categorical cross-entropy for 

classification and Mean Squared Error (MSE) for denoising as components of the joint loss function. It should 

explain that categorical cross-entropy is a standard and effective choice for multi-class classification tasks, 

while MSE is ideal for measuring the difference between the reconstructed (denoised) signal and the clean 

ground truth, thereby driving the network to minimize reconstruction error. Crucially the detailed explanation 

of the weighting coefficient 𝜆 is required along with an ablation study or sensitivity analysis. This study would 

involve systematically evaluating the model performance (both classification accuracy and denoising 

capability) across a range of 𝜆 values. The results from this analysis would then be presented, clearly 

demonstrating the impact of 𝜆 on the trade-off between the two objectives and providing empirical justification 

for the chosen optimal value. This will significantly enhance the theoretical robustness and reproducibility of 

the methodology. 

 

3.3. Signal Preprocessing and Data Augmentation Techniques 

This section needs to expand on the preprocessing steps, providing precise implementation details for 

each. For normalization the specific method used (e.g., Min-Max scaling to a certain range, Z-score 

normalization) and its parameters should be stated, along with the rationale for its choice in optimizing network 

convergence. For bandpass filtering, exact frequency ranges, the type of filter (e.g., Butterworth, Chebyshev), 

and its order must be specified, explaining how these parameters were determined to effectively isolate the 

signal of interest and reduce out-of-band noise. Furthermore a comprehensive description of the data 

augmentation techniques employed such as time shifting, frequency perturbation or the addition of various 

noise types beyond AWGN, is essential. For each technique, the precise parameters (e.g., range of time shifts, 

magnitude of frequency perturbations, SNR levels of added noise) and their role in improving the model's 

robustness and generalization across different real-world conditions should be detailed. Justification for the 

intensity and application of these augmentations should also be provided, potentially referencing empirical 

tuning or domain-specific knowledge. 

 

3.4. Hyperparameter Optimization Strategy  

While the use of Bayesian optimization is noted, this section should elaborate on why this specific strategy 

was chosen over alternatives like grid search, random search or evolutionary algorithms. The discussion should 

highlight the advantages of Bayesian optimization in terms of efficiency particularly for high-dimensional 

hyperparameter spaces, and its ability to intelligently explore the parameter landscape. Although a full 

comparative analysis against other optimization methods might be extensive for a single paper, a brief 

justification acknowledging their existence and explaining the benefits of the chosen approach in optimizing 
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the latency-accuracy trade-off would significantly strengthen the methodology. This section could also briefly 

describe the search space defined for the hyperparameters and the objective function used in the Bayesian 

optimization process. 

 

4. TYPES OF COMMUNICATION SIGNALS FOR ANALYSIS 

In recent years, artificial intelligence (AI) and information and communication technology have 

converged, leading to an increasing prominence of AI in communication signal analysis. Analyzing 

communication signals is crucial for addressing numerous challenges and achieving signal interpretation in 

various applications. Many new research efforts have emerged to integrate AI algorithms with communication 

signal processing, particularly for handling complex and noisy wireless signals. This research specifically 

focuses on communication signals utilized in wireless communication environments, which demand advanced 

analytical techniques due to their volume, complexity, and susceptibility to noise [7],[25]-[27]. 

 

5. MACHINE LEARNING MODELS FOR SIGNAL CLASSIFICATION 

With the increasing prevalence of artificial intelligence (AI) applications in wireless communication 

technologies, considerable research effort has been devoted to applying AI techniques for signal processing 

purposes in radio signals [28][29]. This development has led to the emergence of so-called intelligent radio 

signal processing (IRSP) systems. One of the most well-examined research directions in IRSP pertains to the 

field of automatic modulation classification (AMC). In many AI-powered networked wireless communication 

systems, signal recognition and modulation classification are crucial for autonomous monitoring and efficient 

spectrum utilization, leading to improvements in network quality of service and performance [28][29]. 

AMC is a set of fundamental processes that characterize radio signals transmitted in the physical layer, 

analyzing pertinent aspects such as their modulation type and structure [30]. Generally, AMC models or 

algorithms could have one of the two operational formats: an observation-based mechanism or a feature-based 

one. The first paradigm operates by estimating observational signal properties from the radio signal itself and 

subsequently comparing them against a set of predefined thresholds. Although some studies have been done to 

modernize these models by applying adaptive signal processing techniques, the computational demands of 

these approaches are still too high for IoT devices [31][32]. The second operational format of AMC is known 

as feature-based AMC, and it exploits digital signal processing (DSP) in combination with AI and is 

consequently studied in this work.  In a wireless communication system, various radio signals are concurrently 

transmitted and received across heterogeneous devices and technologies [33][34]. Since the wireless network 

channel is a precious resource, it is essential to manage spectrum usage judiciously, and consequently, spectrum 

awareness is urgently needed to optimize network performance. In the context of AI-powered wireless network 

systems, this is primarily achieved through adaptive modulation and coding (AMC) of the received signal [35]-

[37]. 

 

6. DEEP LEARNING ARCHITECTURES FOR SIGNAL ANALYSIS 

Artificial Intelligence is gaining increasing importance in the analysis of communication signals, but its 

application has not been extensively explored yet. This article analyzes how artificial intelligence-based 

techniques can be applied for the detection, classification, and demodulation of communication signals with a 

focus on transceiver-free operations [38].  The problem of point-to-point signal recovery (demodulation) is 

initially formulated. After a proper formulation of the task, different methodologies are addressed, namely 

SVM and deep neural networks [39][40]. Finally, random features and random projections are considered. 

Then, the multiclass signal classification problem is addressed. Starting from real-world scenarios where 

communication signals are transmitted and the task is to classify the signal type, various methodologies are 

considered, progressing from simple Support Vector Machine classifiers to more complex ones using a stacked 

neural network architecture. Finally, a new handwritten method for detecting signals using Eigenfaces is 

presented. Time series signal detection is addressed. The task is to detect a signal whose onset is unknown 

[41]-[43]. The relevance of such a problem arises in several applications [44]. In this case, different approaches 

are compared, starting with the detection of time series using an SVM [45][46]. The obtained results are 

compared and contrasted with the other two supervised state-of-the-art methodologies. The findings suggest 

that SVM provides state-of-the-art results already with sparse features [21],[47][48]. The input signal is 

modeled as a combination of the original modulated signal and additive white Gaussian noise (AWGN). 

Mathematically, this can be expressed as: 
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 𝑥(𝑡) = 𝑠(𝑡) + 𝑛(𝑡) (1) 

where: 𝑥(𝑡) is the observed noisy signal, 𝑠(𝑡) is the clean modulated signal, and 𝑛(𝑡) ∼ 𝑁(0, 𝜎2) is the additive 

Gaussian noise with zero mean and variance 𝜎2. CNN is trained to learn a function θf  parameterized by weights 

𝜃, that maps the input noisy signal x(t) to its corresponding modulation class  𝑦: 

 𝑓𝜃(𝑥(𝑡))  = 𝑦̂ (2) 

To enhance both classification accuracy and denoising capability, a joint loss function is defined: 

 𝐿𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 + 𝜆 ⋅ 𝐿𝑑𝑒𝑛𝑜𝑖𝑠𝑖𝑛𝑔 =  𝐿𝑡𝑜𝑡𝑎𝑙  

Where Lclassification is the standard categorical cross-entropy loss, Ldenoising is the mean squared error 

(MSE) between the denoised output and clean reference signal, 𝜆 is a regularization coefficient to balance 

between classification and denoising objectives. 

 

7. FEATURE EXTRACTION AND SELECTION METHODS 

Effective feature extraction methods for improved classification of communication signals using artificial 

neural networks (ANNs) are presented [49]-[51]. These methods extract a few practical features that can 

significantly classify the signal with a high accuracy rate [52]-[54]. The feature extraction and selection 

methods are tested on real ECG and EMG signals. Comparative studies are conducted using the most common 

and simplest method to extract time and frequency domain features without involving any further complicated 

mathematical approaches [55]. The proposed methods are faster in terms of computational efficiency and 

provide a high accuracy rate. Feature extraction is an essential step in the data analysis paradigm. It reduces 

high-dimensional raw data to a much lower-dimensional representative set [56]. A common objective of feature 

extraction is to capture the salient characteristics of the raw data and represent them concisely. Features can be 

simply statistical quantities (e.g., mean, variance), linear or nonlinear projections (e.g., principal component 

analysis, wavelet transform). The quality of the extracted features is crucial in various applications, as 

subsequent data analysis steps depend on them. Machine learning algorithms, for example, are susceptible to 

the quality of the input features. A data-driven model construct typically involves analyzing the features and 

selecting the most relevant subset [38]. In classical statistics, the effect of choosing a subset based on the data 

(even in a linear regression setting) has been extensively investigated, and a variety of feature selection methods 

have been proposed. However, there has been little interest in feature analysis or selection for time series data . 

As a result, the typical approach used in analyzing time signals involves constructing handcrafted features, 

which are then fed into the learning algorithm [56]. 

 

8. SYSTEM ARCHITECTURE 

8.1. Signal Preprocessing 

Signals are preprocessed using normalization and bandpass filtering to reduce redundancy and baseline 

noise. Data augmentation techniques such as time shifting and frequency perturbation are applied to enhance 

model robustness [57]. 

 

8.2. Convolutional Neural Network (CNN) Architecture 

The proposed CNN architecture comprises three 1D convolutional layers with ReLU activation, batch 

normalization, and dropout for regularization. These layers are followed by flattening and two fully connected 

dense layers, culminating in a softmax output layer. The architectural depth and filter size were determined 

through Bayesian optimization to strike a balance between model complexity and latency. Compared to deeper 

CNN-RNN hybrids or Transformer-based architectures, our design achieves a 30–50% reduction in inference 

time while preserving accuracy, making it ideal for real-time deployment [58]. 

 

9. DATASETS AND EXPERIMENTAL SETUP 

We utilize both synthetic and real-world datasets (RadioML2018.01A, DeepSig) spanning multiple 

modulation types (QPSK, BPSK, 16QAM, etc.). All models are trained on 80% of the data and evaluated on 

the remaining 20% using a 5-fold cross-validation approach. Experimental conditions simulate varying noise 
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levels using Additive White Gaussian Noise (AWGN) across SNR levels from -20 dB to +20 dB. Model 

implementation is done in PyTorch and evaluated on an NVIDIA RTX 3080 GPU. 

 

10. SIGNAL DENOISING AND ENHANCEMENT TECHNIQUES 

Signal denoising is a critical aspect of communication signal processing, aiming to remove unwanted 

noise while preserving the integrity of the message. In our approach, noise reduction is handled intrinsically 

by the proposed CNN architecture, which effectively filters out noise components within the 1D signal domain 

through its convolutional layers, thereby enhancing overall signal quality and classification accuracy  [57]. 

  

11. RESULT AND DISCUSSION 

The proposed CNN model was evaluated against FFT + Thresholding, Support Vector Machine (SVM), 

and Long Short-Term Memory (LSTM) models under identical conditions using both synthetic and real-world 

datasets (RadioML2018.01A, DeepSig). The evaluation covered three key performance metrics: classification 

accuracy, noise robustness (measured via SNR), and inference latency. As shown in Table 1, evaluation Metrics 

for FFT, SVM, LSTM, and Proposed CNN," offers a comparative analysis of different models across three key 

performance metrics: Accuracy (%), Noise Reduction (SNR dB), and Processing Time (ms). The proposed 

CNN model consistently achieves the best results across all evaluated metrics, demonstrating its superior 

performance compared to traditional and other machine learning models.  

In terms of Accuracy (%), the CNN (Proposed) model achieves an impressive 96.8%. This significantly 

outperforms the other models, with LSTM achieving 91.2%, SVM achieving 85.7%, and FFT + Thresholding 

showing the lowest accuracy at 72.3%. The CNN's superior accuracy can be attributed to its ability to 

effectively capture local temporal dependencies in the signal and its use of optimized hyperparameters via 

Bayesian search, which minimizes overfitting and ensures stable convergence. The highlights the CNN strong 

capability in learning intricate spatial features directly from raw 1D signals without the need for handcrafted 

feature extraction. 

For Noise Reduction (SNR dB), the CNN (Proposed) model records an average SNR improvement of 

22.3 dB. It is a substantial enhancement, being 26.7% higher than LSTM 17.6 dB and more than double the 

performance of FFT + Thresholding, which achieved 10.5 dB. SVM also showed a lower noise reduction of 

14.8 dB. It is superior noise reduction capability confirms the CNN robustness particularly under low-SNR 

conditions that making it highly effective in challenging communication environments. The intrinsic design of 

the CNN architecture with its convolutional layers that effectively filters out noise components within the 1D 

signal domain, thereby enhancing overall signal quality.  

Regarding Processing Time (ms), which is critical for real-time systems, the CNN (Proposed) model 

demonstrates exceptional efficiency with an inference time of only 11.3 ms. This is faster than LSTM's 20.1 

ms and more efficient than SVM's 12.8 ms, and also quicker than FFT + Thresholding's 15.4 ms. The 

lightweight design of the CNN architecture and its optimization through Bayesian tuning contributes to this 

low latency which making it particularly well-suited for deployment on edge AI hardware. The design achieves 

a 30–50% reduction in inference time compared to deeper CNN-RNN hybrids or Transformer-based 

architectures while preserving accuracy, which is ideal for real-time deployment. 

The CNN model maintains a strong balance between accuracy, speed, and robustness to noise, making it 

an ideal choice for real-time applications in fields such as 5G, IoT, and cognitive radio environments. Its ability 

to jointly optimize classification accuracy and noise resilience using a lightweight and latency-efficient 

architecture signifies a pivotal advancement in intelligent radio systems. The superior performance of CNN 

can be attributed to three main factors: (1) the ability of convolutional layers' ability to capture local temporal 

dependencies in the signal; (2) effective regularization through dropout and batch normalization, and (3) 

optimized hyperparameters via Bayesian search, which ensures minimal overfitting and stable convergence. 

 
Table 1. Evaluation Metrics for FFT, SVM, LSTM, and Proposed CNN 

Model Accuracy (%) Noise Reduction (SNR dB) Processing Time (ms) 

FFT + Thresholding 72.3 10.5 15.4 

SVM 85.7 14.8 12.8 
LSTM 91.2 17.6 20.1 

CNN (Proposed) 96.8 22.3 11.3 

 

Figure 1 show the bar chart visually depicts the classification accuracy of the FFT + Thresholding, SVM, 

LSTM, and CNN (Proposed) models. The Y-axis represents Accuracy (%), ranging from 0 to 100, while the 

X-axis lists the different models. Consistent with Table 1 The CNN (Proposed) model stands out with the 

highest accuracy, nearing 100%. This visually confirms that the proposed CNN achieves 96.8% classification 
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accuracy which is markedly superior to LSTM's 91.2%, SVM's 85.7%, and FFT + Thresholding's 72.3%. The 

significant height of the CNN bar relative to the others underscores its advanced capability in discerning 

different modulation types even under challenging conditions. This superior performance is attributed to the 

CNN ability to effectively capture local temporal dependencies and learn spatial features directly from raw 1D 

signals without requiring handcrafted feature extraction. 

Figure 2 show the bar chart illustrates the noise reduction capabilities of each model, measured in SNR 

dB. The Y-axis represents Noise Reduction (SNR dB), and the X-axis shows the models. The CNN (Proposed) 

bar is notably the tallest that indicating its best performance in noise reduction. The figure clearly shows the 

CNN (Proposed) achieving an average SNR improvement of 22.3 dB. It is a substantial improvement compared 

to LSTM's 17.6 dB, SVM's 14.8 dB, and FFT + Thresholding's 10.5 dB. The visual difference in bar heights 

emphasizes that the CNN denoising capability is approximately 26.7% higher than LSTM and more than 

double that of FFT-based approaches. This strong performance in mitigating noise confirms the CNN's 

robustness in harsh communication environments, where signals are often corrupted by various noise sources. 

Figure 3 show the bar chart compares the processing time (latency) of each model, depicted on the Y-axis in 

milliseconds (ms), against the different models on the X-axis. The CNN (Proposed) model exhibits the shortest 

bar, indicating the fastest processing time. Specifically, the CNN (Proposed) achieves an inference time of 11.3 

ms. This is considerably faster than LSTM's 20.1 ms and more efficient than SVM's 12.8 ms, as well as FFT + 

Thresholding's 15.4 ms. The visual representation reinforces that the lightweight architecture of the proposed 

CNN, optimized through Bayesian hyperparameter tuning, is highly efficient, making it particularly well-suited 

for real-time deployment on edge AI hardware. The CNN maintains a strong balance between accuracy, speed, 

and robustness, making it ideal for real-time applications in 5G, IoT, and cognitive radio environments [59]-

[61]. Despite these promising results, limitations exist. The current model was trained and evaluated in AWGN 

conditions. Future work will focus on testing in multipath fading and real hardware setups (e.g., Software-

Defined Radio platforms) to validate its generalizability further. The CNN model consistently achieves the best 

trade-off across accuracy, robustness to noise, and processing latency, making it ideal for edge AI deployments. 

 

 
Figure 1. Classification Accuracy of FFT, SVM, LSTM, and Proposed CNN 

 

 
Figure 2. Signal-to-Noise Ratio (SNR) Improvement by Various Signal Processing Models 
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Figure 3. Comparison: Real-Time Performance: Latency of FFT, SVM, LSTM, and Proposed CNN 

 

The proposed CNN-based model outperforms traditional and classical machine learning models across 

all evaluated metrics: 

• Accuracy: Achieves 96.8%, outperforming LSTM (91.2%) and SVM (85.7%).   

• Noise Reduction: Demonstrates significant denoising capabilities with an average SNR of 22.3 dB, 

compared to 17.6 dB (LSTM) and 10.5 dB (FFT).   

• Processing Time: Efficient runtime of 11.3 ms, faster than LSTM and comparable to SVM. 

The convolutional neural network (CNN) architecture (Figure 4) proves to be the most reliable and high-

performing solution for communication signal analysis, offering a balanced trade-off between speed, accuracy, 

and denoising effectiveness. While various deep learning and machine learning methodologies have been 

explored for signal analysis, many existing approaches often present trade-offs, either in terms of 

computational complexity, making them unsuitable for real-time applications, or limited generalization in 

dynamic and noisy environments. Our work addresses these limitations by providing a unified, high-

performance AI model designed explicitly for robust classification and denoising of real-world signals under 

challenging conditions. 

 

 
Figure 4. Deep Neural Network Architecture 

 

12. ABLATION STUDY 

We performed an ablation analysis to evaluate the impact of architectural components. Removing dropout 

led to a 4.5% drop in accuracy. Reducing the number of convolutional layers from 3 to 2 decreased SNR by 

3.2 dB. These results confirm that each design element makes a significant contribution to performance. 

 

13. APPLICATION DOMAINS 

The proposed system can be directly applied in: 

• Cognitive Radios: For dynamic spectrum sensing 

• Satellite Communication: To mitigate cosmic noise and enable real-time modulation classification 
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• IoT Gateways: For lightweight, edge-based signal classification 

• Military & Defense: Secure signal demodulation and jamming detection 

Additionally, due to its lightweight design and low memory footprint, the model can be deployed on embedded 

systems such as NVIDIA Jetson Nano or Xavier, enabling real-time inference in constrained environments. 

This makes it particularly useful in UAV communication, IoT gateways, and battlefield radios where power 

and speed are critical. 

 

14. APPLICATIONS OF AI IN RADIO SIGNAL ANALYSIS 

Understanding and interpreting information carried by radio signals are two critical tasks in radio 

communications that underpin various applications of communication signals [1]. However, the complexity of 

signal inference becomes substantial, even with a specific type of signal, such as phase shift keying or 

quadrature amplitude modulation signals. The problem persists in wireless environments, where various 

phenomena, including fading and interference from other communication systems distort signals. There is great 

interest in developing effective methods to solve the tasks. Artificial intelligence, which provides adaptive 

mechanisms, is a hot topic in modeling and analyzing intricate data due to the ever-increasing volume of data 

being generated. Consequently, it also has broad applications in radio signal analysis, enabling the performance 

of complex transformations of information carriers and modeling ambiguous environments [62]. AI-based 

methods have shown promise in analysis tasks, traditionally conducted using heuristics and ad hoc methods, 

as well as deep learning methods such as convolutional neural networks, recurrent neural networks, attention 

mechanisms, and long short-term memory, which have been used with great success in recent years to model 

radio signals. This paper presents a survey of state-of-the-art AI solutions employed in the intelligent 

processing of radio signals to classify modulation modes, detect signal presence or absence, and estimate 

channel properties [63]. Furthermore, it reviews AI applications for three main themes of radio signal analysis. 

It discusses them according to various classifications, providing the necessary background knowledge for 

readers with different types of related expertise to gain a comprehensive understanding of the corresponding 

topic. 

 

15. CHALLENGES AND LIMITATIONS IN AI-BASED SIGNAL ANALYSIS 

While the model excels in AWGN conditions, future work will extend evaluations to fading channels and 

real-time hardware implementations. Incorporating attention mechanisms or hybridizing Transformers with 

CNNs is another avenue to explore. The application of artificial intelligence (AI) in the analysis and processing 

of communication signals is a crucial stage in a survey. Regarding other applications of AI in wireless 

networks, this is attributed to its open and flexible structure. In compliance with the OSI model, this discussion 

focuses on a wireless network interface model, which distinguishes between data modeling in the 

communication model and the signal model. Fifteen different models corresponding to OSI levels 1-4 form the 

proposed artificial intelligence-based wireless network interface model. Then, according to this model, some 

typical signal processes and models suitable for, or unavoidable in, future or efficient implementation in an AI 

framework, entailing either analytical exploration or empirical analysis, are categorized. While some 

significant findings have been reported in the literature so far, several challenges remain unresolved, and 

several suggestions and directions for future research are proposed [1]-[21]. 

 

16. CONCLUSION 

In this work, we introduced a high-performance, CNN-based framework for real-time classification and 

denoising of communication signals. Unlike traditional methods, our approach jointly optimizes classification 

accuracy and noise resilience using a lightweight and latency-efficient architecture. Experimental results on 

benchmark datasets demonstrated superior accuracy of 96.8%, enhanced signal-to-noise ratio (SNR) of 22.3 

dB, and low inference latency of 11.3 ms, consistently outperforming classical and deep learning baselines, 

including FFT, SVM, and LSTM. The proposed model’s design offers a scalable and deployable solution for 

intelligent radio systems, particularly in real-time and resource-constrained environments such as IoT 

gateways, cognitive radios, and defense communications. By leveraging convolutional layers optimized 

through Bayesian hyperparameter tuning, the model maintains a strong balance between speed, precision, and 

robustness under noisy signal conditions. 

Despite these promising results, the current evaluations were primarily conducted under Additive White 

Gaussian Noise (AWGN) assumptions. The absence of testing under more complex real-world channel 

impairments, such as multipath fading, Doppler shifts, and dynamic channel interference, means that the full 

extent of the model’s performance and generalizability in such environments has not yet been critically 
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examined. Furthermore, while the RadioML2018.01A dataset used is comprehensive, its diversity in 

modulation types and signal structures needs further validation to ensure robust generalizability across entirely 

unseen or adversarial scenarios. 

Looking forward, future research aims to extend this framework by integrating advanced mechanisms 

like Transformer-CNN hybrids or attention mechanisms. However, it is important to address how such 

additions might impact the current low computational efficiency and latency, which are key advantages of the 

present architecture. While deployment on embedded platforms like NVIDIA Jetson is suggested, a more 

rigorous validation of real-world feasibility will require providing concrete empirical benchmarks for resource 

utilization, including memory footprint, power consumption, and thermal throttling, especially for ultra-

resource-constrained devices like ARM Cortex-M. Overall, this research highlights the viability of deep 

learning, specifically CNN architectures, as a backbone for intelligent, real-time analysis of communication 

signals in next-generation wireless systems, with clear avenues for addressing current limitations [22]-[27]. 
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