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In recent years, Transfer Learning (TL) models have demonstrated significant
promise in advancing precision medicine by enabling the application of
machine learning techniques to medical data with limited labeled
information. TL overcomes the challenge of acquiring large, labeled datasets,
which is often a limitation in medical fields. By leveraging knowledge from
pre-trained models, TL offers a solution to improve diagnostic accuracy and
decision-making processes in various healthcare domains, including medical
imaging, disease classification, and genomics. The research contribution of
this review is to systematically examine the current applications of TL models
in precision medicine, providing insights into how these models have been
successfully implemented to improve patient outcomes across different
medical specialties. In this review, studies sourced from the Scopus database,
all published in 2024 and selected for their "open access" availability, were
analyzed. The research methods involved using TL techniques like fine-
tuning, feature-based learning, and model-based transfer learning on diverse
datasets. The results of the studies demonstrated that TL models significantly
enhanced the accuracy of medical diagnoses, particularly in areas such as
brain tumor detection, diabetic retinopathy, and COVID-19 detection.
Furthermore, these models facilitated the classification of rare diseases,
offering valuable contributions to personalized medicine. In conclusion,
Transfer Learning has the potential to revolutionize precision medicine by
providing cost-effective and scalable solutions for improving diagnostic
capabilities and treatment personalization. The continued development and
integration of TL models in clinical practice promise to further enhance the
quality of patient care.
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1. INTRODUCTION

Precision medicine seeks to deliver tailored healthcare grounded in personal attributes such as genetics,
lifestyle, and environment [1]. However, one of the significant challenges in implementing precision medicine
is the restricted access to high-quality, extensive data collections [2]. While genomic data, clinical records, and
medical imaging hold valuable insights for personalized treatment, the scarcity of comprehensively labeled
information hinders the development of robust predictive models [3]. Traditional machine learning (ML)
methods often struggle to generalize across patient populations and disease types due to data limitations [4].
Furthermore, protection of sensitive information along with regulatory issues further complicate obtaining and
distributing healthcare information across institutions.

To address these difficulties, Transfer Learning (TL) has arisen as a viable approach. TL leverages
knowledge learned from a large, well-curated dataset to improve the performance of models trained on smaller,
more specialized datasets [5]. In the context of precision medicine, TL allows for the reuse of pretrained models
across different medical domains, including genomics, health-related imaging, and evaluation of clinical
datasets [6]. This strategy is especially beneficial for addressing the scarcity of data by enabling knowledge
transfer from related tasks or datasets. By applying TL, models can improve diagnostic accuracy, reduce
training time, and facilitate the integration of multi-modal data for better clinical decision processes in
healthcare [7].

Recent progress in TL methodologies has greatly enhanced the forefront of medical Al. Researchers have
effectively implemented TL across multiple healthcare fields, such as genomics, in which pretrained models
on extensive genomic datasets are adapted to target particular categories of diseases [8]. In medical imaging,
TL has been used to augment small datasets, enabling improved lesion detection and image segmentation [9].
Additionally, TL has shown promise in integrating multi-omics data, where models initially developed on a
single omics dataset (for example in genomics) are repurposed for another domain (for instance proteomics or
metabolomics) [10]. These breakthroughs are setting the stage for more accurate and scalable solutions in
precision medicine.

The originality of this study resides in its comprehensive exploration of TL applications across multiple
domains of precision medicine, synthesizing recent findings to highlight the most promising strategies for
model development. The contribution of this review is twofold: first, it consolidates the current state of TL
applications in precision medicine; and second, it identifies the key challenges that remain, such as negative
transfer and data heterogeneity. Furthermore, it provides insight into future directions that could enable further
advancements, such as federated learning and the use of self-supervised models for pretraining on unlabeled
medical data. By summarizing the cutting-edge applications of TL in precision medicine and pointing out the
challenges and future research areas, this review aims to guide the development of more efficient, scalable, and
adaptable machine learning models for personalized healthcare.

2. CONCEPT OF TRANSFER LEARNING IN PRECISION MEDICINE

Transfer Learning (TL) represents an artificial intelligence method which allows models or features
derived from large, general datasets to be adapted and applied to smaller, task-specific datasets [11]. This
method proves especially advantageous in precision medicine, since obtaining extensive annotated datasets is
frequently difficult and expensive [12]. By shifting insights from a data-rich source domain to a target domain
constrained by limited information, TL enables the development of accurate and efficient models without
requiring extensive data collection for the target task [13]. This is particularly crucial in medical fields where
datasets can be sparse and expensive, for instance in uncommon diseases or distinct patient cohorts [14].
Additionally, TL can help overcome the challenges of data heterogeneity in medical domains, where datasets
can vary significantly due to differences in population characteristics, healthcare systems, or even data
collection methods [15]. By transferring knowledge across related domains, TL allows models to better
generalize and adapt to the nuances of diverse patient groups, ensuring that predictive models remain robust
and effective when applied to different clinical contexts [16]. This flexibility is crucial to enhance diagnostic
precision and refine individualized therapeutic approaches in real-world medical settings [17].

2.1. Target Data Types

When dealing with labeled data, Transfer Learning methods often fall under inductive transfer learning.
This approach is used when the model is applied to a target domain where both input data and labeled outputs
are available [18]. In precision medicine, this can be seen in applications such as disease diagnosis or patient
outcome prediction where existing datasets (e.g., from clinical trials) contain both the inputs (patient data) and
the corresponding outputs (disease labels or clinical outcomes). Inductive Transfer Learning enables models
to generalize from these datasets to predict on unseen medical data with higher accuracy [19]. On the other
hand, unannotated datasets within healthcare fields necessitate unsupervised transfer learning. This technique
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is employed when the target domain lacks labeled data but still contains useful input data (e.g., raw medical
images or genomic data) [20]. The main objective is to derive informative attributes or abstractions out of these
datasets without the necessity for explicit annotations, which can be particularly useful in genomics and
medical imaging scenarios in which labeled information is frequently limited [21]. Furthermore, transductive
transfer learning is implemented when a model is shifted to a related domain but where the target data may be
partially labeled or consists of a small number of labeled samples, helping to fine-tune the model with minimal
labeled data [22].

2.2. Methods in Transfer Learning
In the context of Methods in Transfer Learning, various techniques can be applied to achieve better

performance in precision medicine. These methods can be categorized as follows:

e Instance-based Transfer Learning focuses on relocating particular data samples from the origin domain
to the destination domain [23]. This method works well in medical applications where specific case
histories from one disease or treatment may be applied to similar new cases.

e  Feature-based Transfer Learning aims to align and transfer feature representations across domains [24].
In precision medicine, this method is useful for tasks like medical image analysis, where the features of
one set of images (e.g., from one hospital or machine) are transferred to improve the analysis of another
set with different characteristics (e.g., from another hospital or imaging modality).

e  Model-based Transfer Learning involves relocating the fully developed model from the origin domain to
the destination domain [25]. This approach is particularly effective in scenarios like disease prediction or
drug discovery, where deep learning algorithms developed using extensive datasets (e.g., gene expression
data) are applied to smaller, domain-specific medical datasets.

e  Fine-tuning knowledge transfer learning adjusts previously trained algorithms to the target domain’s data
[26]. In precision medicine, this is widely used where an already developed model built upon an extensive
dataset (e.g., general patient data) is further optimized with a narrower and more targeted dataset (e.g., a
particular cancer type or a region with unique healthcare characteristics).

Every one of these methods serves a crucial function in enabling the adaptability of models to diverse
medical data, facilitating the accurate prediction of disecase outcomes, patient care, and therapeutic
interventions, even in the face of limited labeled data [27]. Thus, Transfer Learning demonstrates strong
potential in advancing precision medicine through enhancing computational effectiveness and forecast
precision in healthcare applications can be seen in Figure 1 [28].

Transfer

Learning

Target Data Methods in

Types

Transfer

Instance-based Feature-based Model-based Fine-tuning
Labeled Unlabeled Transfer Transfer Transfer Transfer
Learning Learning Learning Learning

| ——

Inductive Transductive Unsupervised

Transfer Transfer Transfer
Learning Learning Learning

Figure 1. Types of Transfer Learning Models

3. CURRENT APPLICATIONS IN PRECISION MEDICINE

The application of Transfer Learning (TL) in precision medicine has attracted considerable focus in the
past few years, demonstrating its capacity to enhance medical results by providing more accurate diagnoses,
personalized treatments, and enhanced decision-making processes [29][30]. This section reviews the current
applications of TL models in precision medicine, drawing insights from recent research. The articles used in
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this review were sourced from the Scopus database, with a focus on publications released in 2024. Only "open
access" articles were selected to guarantee openness and clarity of the study. To identify relevant studies, the
following search query was used ("transfer learning" OR "pretrained model” OR "fine-tuning") AND
("precision medicine" OR "personalized medicine") AND ("machine learning" OR "deep learning" OR
"artificial intelligence"). The search results yieclded a wide range of studies that demonstrate how TL techniques
are applied across various areas of precision medicine, including medical imaging, genomics, disease
classification, and clinical data analysis. The following are journal articles that discuss applications of transfer
learning models in precision medicine which are presented in Table 1 and Figure 2.

Table 1. Selected Articles Related to Transfer Learning Models for Precision Medicine

Ref Author Year  Application Area Dataset Source Model Used Transfer Method
COVID-19 World Neural Networks (Transfer
COVID-19 . . S . .
[31] Amiri,eral. 2024  Decision Support Dataset (Our World in Learning), Multi-attribute Fine-tuning
’ ' System Data), ECDC, Decision-Making (Transfer Learning)
y GISAID (MADM)
. . AlexNet, Inception-
Haque, et Medical Ima.gmg Kaggle Datasets .(C_ ResNet, XceptionNet, Fine-tuning, Feature-
[32] 2024 (Leukemia NMC, Leukemia .
al. Diagnostics) Dataset 0.2) RetinaNet, CenterNet, based
& : DCNN
COVID-19
Medical Imaging Radiography Database . .
Mohan, et (COVID-19 (Kaggle), Chest X-ray ~ VGG16, Inception ResNet | ne-tuning, Transfer
[33] 2024 . . Learning, CNN from
al. Detection from Images Pneumonia V2, CNN Seratch
Chest X-rays) and COVID-19
(Mendeley)
Deep Convolutional
Medical Tmagin Neural Network (DCNN),
Houssein, et cH MABME  HAM10000, ISIC- VGG16, VGG19, Fine-tuning, Transfer
[34] 2024 (Skin Cancer .
al. Classification) 2019 DenseNet121, Learning
assilicatio DenseNet201,
MobileNetV2
Medical Imaging . . .
S : MRI Images (318 Deep Transfer Learning Fine-tuning, Model-
[33]  Duan,eral. 2024 (Meningioma Ki- cases) (DTL), CNN (ResNet50) based
67 Prediction)
Medical Imaging . L.
. . , Contrastive Variational .
[36] Ma, et al. 2024 (Autlsrp Spectrum Shenzhen thldren s AutoEncoder (CVAE), Trangfer Legrmng,
Disorder Hospital Fine-tuning
. . Random Forest
Classification)
Medical Imaging Kagele Brain Tumor AlexNet, VGG19, Stack Fine-tunin
[37] Natha, etal. 2024 (Brain Tumor gl%/IRI Dataset Ensemble Transfer Ensemble L i’] in
Detection) atase Learning (SETL_BMRI) semble Learning
VGG16, ResNet50,
Medical Imaging BRATS 2015, Brain MobileNetV2,
[38]  Rasa, etal 2024 (Brain Tumor Tumor Classification DenseNet201, Fine-tuning
Detection) Dataset (Kaggle) EfficientNetB3,
InceptionV3
Medical fmaging Multi-class Brain
[39] Otaibi, eral. 2024 (Brain Tumor Tumor MRI Image 2D-CNN, VQG16, k-NN F me-tumngf Transfer
. Dataset (21,672 Classifier learning
Detection) .
images)
Medical Imaging . Xception, VGG-19, . .
[40] Mora}n, et 2024  (COPD Detection iﬁ?—liﬁ?}? 12&%2&% InceptionResNetV2, Tl:;iz-ft;nﬁiir?q?g
a. using ECG) Y Subj DenseNet-121 g
Medical Imaging . .
[41] Kumar, et 2024 (Alzheimer's Kaggle Da_taset GoogLeNet, FENN F 1ne-tun1ng,‘ Feature
al. . . . (12,936 MRI images) extraction
Disease Diagnosis)
[42] Azizian, et 2024 (migilllzimri)stein RBPSuite, ENCODE, Bi-LSTM, CNN, Cosine Transfer learning,
al. . p EVPsort, CLASH Similarity Cosine similarity
interactions)
Medical Imagin DRISHTL-GS, l::vrrcl)i_g h?i(eetsr;r;ifzg
Madduri, et lea’ maging Messidor-2, Messidor, Modified ResNet-50, e S
[43] al 2024 (Diabetic Eye Kagele cataract DenscUNet for classification,
' Disease detection) &8 DenseUNet for
dataset .
segmentation)
Disease
Classification Variational Autoencoder Transfer learning
[44]  Gore,etal. 2024 (Non- NCB;;;ESS()GSE (VAE) with transfer (CancerNet to
communicable learning from CancerNet NCDs)
diseases)
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Ref Author Year  Application Area Dataset Source Model Used Transfer Method
EEG Motor Transfer learning
. Imagery . . with feature-
[45] Taghizadeh, ), Classification Physionet MI Dataset ID-CNN with Semi-deep extracted data, fine-
etal. . Fine-tuning . .
(Brain-Computer tuning pre-trained
Interface) model
. . Transfer learning
Medical Imaging . . . . .
(Diabetic Diabetic Retlnopat.hy Mobile-Net, CNN, PSO- w1th Pi.lrtl(?le Swarm
[46] Raza,etal. 2024 . Dataset, MRI Brain Vo Optimization (PSO)
Retinopathy, MRI Optimized L
. Tumor Dataset and Constriction
Brain Tumor)
Factor
. . ResNet-50, VGG-16 .
. Medical Imaging ’ ? Transfer learning
[47] Ansari, et 2024 (Lung Cancer LIDC-IDRI ResNet-101, VGG-19, with hyperparameter
al. Detection) DenseNet-201, tumin
ctectio EfficientNet-B4 uning
Alturki, ef (Cclllrlél;fsllgzi XGBoost, Random Forest, Knﬂiiﬁnpvu;gefsor
[48] ? 2024 . y UCI CKD dataset Extra Trees Classifier g i
al. Disease . SMOTE for class
L (TrioNet ensemble) .
Prediction) imbalance
. Medical Imaging BreakHis (Kaggle), . Transfer learning
[49] Jakl;?laaldlkl’ 2024 (Breast Cancer Wisconsin Breast CN;:Ir’aE:;; srelll ztr’n?gbnd with attention
’ Diagnosis) Cancer (UCI) & mechanism
Medical Imaging Hybrid transfer
DenseNet121, K .
[50] Ragab,eral 2024 (COYID—19 COVID-ChestXRay Autoencoder-LSTM, learning with FFA
detection from Dataset . . for hyperparameter
Firefly Algorithm (FFA) o
chest X-rays) optimization
hg];?ézzlt g?l%ierig ResNet-18, CNN, Transfer learnin
[51] Koshy,etal. 2024 . BreaKHis Levenberg—Marquardt . ng
Histopathology oL with fine-tuning
. . Optimization
Classification)
Salinas, et EmotlF) n CARLA Slmu.la.tor CNN (VGGL16, Inception Transfer learning
[52] 2024 Recognition (Simulated Driving . . .
al. . . V3, EfficientNet) with fine-tuning
(Driver Emotion) Data)
Clinical Data Mass General Transfer learning
. (Pediatric Brigham (MGB), MUGS (Multisource R >
[33] Li, etal, 2024 Knowledge Boston Children’s Graph Synthesis), SVD Grar;l;l laiiiz(iillzeature
Extraction) Hospital (BCH) e &
Clinical Data University of Bonn Multi-View Transfer trﬁ‘;gx;ﬁﬁ
[54] Wang, etal. 2024 (Epilepsy Versty Learning (MVTL-LSR), sier fearning
.. EEG Dataset with privacy
Recognition) CNN -
protection
. . EWAS Data Hub Autoencoders (NCAE), .
[55] Eng;llta, et 2024 GeMnZ:ElCIZt(i](?SA (Illumina 450K and Deep Neural Networks ;?Xge;nlifgé?f’
: Y EPIC arrays) (DNN) &
Clinical Data WISDM (Wireless Semi-Supervised Learnin On-device learning
[56] Roy, et al. 2024 (Human Activity Sensor Data Mining (SSL) Il)<-means GMM g with sparse labeling
Detection) Lab dataset) ’ ’ and clustering
. . Dense-EfficientNet, Slime .
Medical Imaging Mould Algorithm (SMA) Transfer learning,
[57] Ragab,efal. 2024 (Colorectal Cancer =~ Warwick-QU Dataset & ’ hyperparameter
Detection) Deep Hopfield Neural optimization
Network (DHNN)
Medical Imaging Transfer learning
(58] Hoseny, et 2024 (Diabetic (Dizlfbae%?czl eRth?::)se;th VGGI16, CNN, AE, with data cleansing
al. Retinopathy Images) pathy CLAHE and enhancement
Classification) & filters
i Medical Imaging . Transfer learning
[59] Slddl;llue’ et 2024 (Tumor Kagglehgiraéz)Tumor Inception-V3, CNN with Particle Swarm
' Classification) & Optimization (PSO)
f}l;lqu]((:iar;lsl())f’t : Parkinson's Random Forest (RF), Pgl;?]:_st?::el?c
[60] Xue, et al. 2024 . . Telemonitoring Shapley Value, Game-
Disease Severity Transfer (PSGT),
L Dataset based Transfer
Prediction) Instance Transfer
Kunjumon, Medical Imaging Kaggle Endoscopic Inception-ResNet V2, Transfer learning
[61] 2024 (Esophageal . .
etal. . . Image Dataset CNN with fine-tuning
Cancer Diagnosis)
Medical Imaging COVID-19 Chest X- .
[62]  Ajani,eral. 2024 (COVID-19 ray (CXR), CT GoogleNet, SqueezeNet, ~ Transfer learning
- CNN with fine-tuning
Screening) Dataset
. . Medical Imaging .
Djaroudib, . Kaggle (HAM 10000, Transfer learning
[63] etal. 2024 (?)kilangrclj(?sni(s;;:r Skin Cancer MNIST) VGG16, CNN with fine-tuning
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Ref Author Year  Application Area Dataset Source Model Used Transfer Method
. . Xception, .
Alzubaidi, Medical maging UCI Shoulder Implant InceptionResNetV2, Self-'SL'lperwsed
[64] 2024  (Shoulder Implant . Pertaining (SSP),
etal. Classification) X-ray Dataset MobileNetV2, Transfer learnin;
EfficientNet, DarkNet19 g
[65] Hong, et al 2004 Clinical Data FOS, ARIC, MESA, Logistic Regression, F;ienr:;:fll;ﬁilng,
& ’ (Risk Prediction) REGARDS Translasso ROSE &
Alnuaimi, et Med{cal I'maglng Kaggle DermNet, MobileNet, DenseNet121, Transfer learning
[66] 2024 (Skin Diseases Google Images, Atlas . .
al. . CNN with fine-tuning
Detection) Dermatology
. Clinical Data PM2.5, IHS, HUA, Random Forest (RF), Federated Transfer
[67] Xiang, etal. 2024 (Predictive Wine. eICU Federated Learning (FL), Learning (FTRF)
Modeling) e ¢ Model Averaging ¢ g
. . - . Transfer learning
[68] Khouadja, 2024 Mgﬁﬁal (I:I;l;lcg;?g I\_I{Illllrﬁzr(yDlI{gg)ﬁaé?rf ResNet50, InceptionV3, with pre-trained 3D
etal. Diag nosis) scans) VGG16 ResNet models from
& Tencent MedicalNet
Medical Imaging Diabetic Retinopathy, Transfer learning,
[69] Sambyal, et 2024 (Calibration of Histopathologic ResNet18, ResNet50, Rotation-based self-
al. Deep Neural Cancer, COVID-19 WideResNet supervised learning
Networks) datasets (SSL)
. Medical Imaging Transfer learning
[70] Benbakreti, 2024 Breast C Inbreast, MIAS, ResNet18, AlexNet, ith trained
etal (Breast Cancer DDSM InceptionV3 with pre-traine

Classification)

models

The section presents a comprehensive review of how Transfer Learning (TL) models are currently being
applied across various fields in precision medicine. These models are crucial for advancing medical
diagnostics, particularly in contexts where data scarcity or complexity poses significant challenges. One of the
key areas of medical imaging is the application of TL for diagnostic purposes, such as COVID-19 detection
and cancer classification. Amiri et al. [31] developed a COVID-19 decision support system using neural
networks, leveraging datasets from sources like Our World in Data and GISAID, with a fine-tuning method.
Similarly, Ragab et al. [50] focused on chest X-ray images for COVID-19 detection using DenseNet121 and
Autoencoder-LSTM with hybrid transfer learning for hyperparameter optimization. This shows the broad
utility of TL in diagnosing infectious diseases in urgent public health situations. Additionally, for skin cancer
classification, Houssein et al. [34] applied deep convolutional neural networks (DCNN) and VGG models,
showcasing the effectiveness of TL in dermatological diagnostics using datasets like HAM10000 and ISIC-
2019. TL models are also widely used for brain tumor detection and leukemia diagnostics. Natha et al. [37]
and Rasa et al. [38] explored TL for brain tumor detection, using models such as ResNet50, VGG16, and
MobileNetV2 on MRI datasets from Kaggle and BRATS 2015. Their results underscore the potential of TL to
enhance tumor detection and improve diagnostic accuracy. For leukemia detection, Haque et al. [32] employed
fine-tuning and feature-based TL methods using AlexNet and Inception-ResNet on datasets from Kaggle,
demonstrating how TL helps in processing complex medical imaging data for blood cancer diagnoses. In the
field of genomics, Azizian et al. [42] utilized TL to study miRNA-protein interactions, applying Bi-LSTM and
CNN models with cosine similarity methods. This approach facilitates the analysis of genomic data, which
often suffers from sparsity. Similarly, in chronic kidney disease prediction, Alturki et al. [48] used XGBoost
and random forest classifiers to make predictions based on clinical datasets, demonstrating how TL is applied
to clinical data to forecast disease outcomes.

Clinical data is another area where TL has shown significant promise, particularly in predictive modeling.
Wang et al. [55] employed federated learning combined with TL to analyze risk factors for chronic diseases
using datasets like FOS, ARIC, and MESA, ensuring data privacy while still enhancing predictive accuracy.
Xue et al. [60] applied TL with Random Forest and Shapley value models to predict Parkinson’s disease
severity using telemonitoring datasets, illustrating the integration of TL in clinical decision-making processes.
In diabetic retinopathy classification, Hoseny et al. [58] used transfer learning with fine-tuning on VGG16 and
CNN models, focusing on the Kaggle diabetic retinopathy dataset. Their research shows how TL helps in
processing and enhancing medical images for ophthalmic disease diagnosis. Similarly, in breast cancer
diagnosis, Jakkaladiki et al. [49] used hybrid TL models combined with attention mechanisms, demonstrating
how TL can aid in cancer detection from imaging datasets like BreakHis and Wisconsin Breast Cancer. Several
other studies also demonstrate TL applications in disease classification, emotion recognition, and activity
detection. For example, Kunjumon ef al. [61] applied transfer learning with fine-tuning to diagnose esophageal
cancer using endoscopic image datasets. Similarly, Ajani et al. [62] focused on COVID-19 screening from
chest X-rays and CT images using GoogleNet and SqueezeNet, further emphasizing the role of TL in improving
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diagnostic tools for infectious diseases. Lastly, federated learning is becoming increasingly important in
medical applications as demonstrated by Xiang et al. [67], who applied federated transfer learning for
predictive modeling in clinical data, further enhancing the utility of TL across decentralized datasets while
maintaining privacy.

Genomics

Applications of
Transfer Learning

Models in
Precision
Medicine

Disease
Classification

Figure 2. Applications of Transfer Learning Models in Precision Medicine

4. STRENGTHS AND LIMITATIONS
4.1. Strengths of Transfer Learning in Precision Medicine

Transfer learning (TL) offers significant advantages in precision medicine, particularly in addressing the
constraints arising from scarce medical datasets. One of its key advantages is its capacity to exploit pretrained
models built on large, heterogeneous datasets, which can be further tuned or customized to particular clinical
applications. This approach lessens the requirement for large amounts of labeled data in target domains, which
is often difficult and expensive to obtain in healthcare contexts, such as in rare diseases or specialized imaging
datasets [71][72]. By transferring knowledge from a data-rich source domain to a data-limited target domain,
TL enables the development of highly accurate models without requiring extensive data collection for every
medical task. Another strength of TL in precision medicine is its ability to enhance the generalizability of
machine learning models. Fine-tuning models on domain-specific datasets helps improve performance on small
datasets while reducing overfitting. This is particularly valuable in medical applications like diagnostic imaging
or genomics, where variability in patient data can significantly impact the model's accuracy. For example, TL
models in medical imaging, for example, those applied to brain tumor detection or skin cancer classification,
have shown impressive results when fine-tuned from pretrained architectures such as VGG16, ResNet, and
DenseNet [73][74]. Furthermore, TL models can be adapted to a broad array of tasks, including disease
detection, prediction, and classification, across different medical domains, enhancing their versatility in clinical
settings [75][76].

4.2. Limitations of Transfer Learning in Precision Medicine

Despite its many strengths, TL in precision medicine also faces a number of constraints. One of the
primary challenges is the risk of negative transfer, where the knowledge transferred from the source domain
may not be relevant or beneficial for the target domain. This problem emerges when the differences between
the source and target domains are too large, leading to suboptimal model effectiveness. As an example,
algorithms developed on general medical imaging datasets may struggle to perform well when applied to highly
specialized conditions or rare diseases with minimal data availability [77][78]. Additionally, TL models are
often sensitive to domain shifts, such as variations in imaging equipment or demographic characteristics, which
can compromise their ability to generalize effectively in real-world clinical settings. Another limitation is the
dependency upon the standard of the pre-trained models along with the originating datasets. The success of TL
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heavily relies on the quality and representativeness of the dataset used for the model’s initial training. If the
source data is biased, unbalanced, or unrepresentative of the target population, the transfer of knowledge may
lead to poor model performance or biased predictions in the target domain. As an illustration, TL models built
on data originating from a particular geographic location or patient group might fail to achieve satisfactory
results when implemented on groups with distinct demographic traits or varying medical conditions [79][80].
Furthermore, while TL can diminish the dependence on vast quantities of annotated datasets, the task of
refining models still demands substantial computing capacity and specialized knowledge, making it less
accessible for some healthcare institutions, especially those with limited technical infrastructure [81].

5. EMERGING TRENDS AND RESEARCH GAPS

The application of the concept of transfer learning (TL) in precision medicine has attracted notable
momentum over the past few years, driven by the increasing need for high-quality models in medical domains
that often suffer from limited labeled data. One of the prominent trends is the integration of TL with advanced
deep learning frameworks, especially CNNs, in medical imaging and genomics. For instance, TL methods are
being used to adapt models trained using extensive datasets like ImageNet or GoogleNet to specialized medical
datasets, which enables high performance even with relatively small medical image datasets. This approach
has been particularly beneficial in areas like cancer detection, skin lesion classification, and brain tumor
detection, where acquiring large annotated datasets is costly and time-consuming. Additionally, fine-tuning
pre-trained models has become a common practice, significantly improving model accuracy without requiring
the exhaustive retraining of models from scratch. Another emerging trend is the increasing use of multi-modal
transfer learning, where models leverage information originating from multiple sources, including medical
imaging, clinical documentation, and genomic data. This hybrid approach allows for a more comprehensive
analysis of patient data, integrating insights from multiple domains to generate a broader and more integrated
perspective on patient health. For example, in the detection of diabetic retinopathy, researchers combine image
data from retinal scans with patient health records to create more robust predictive models. The combination
of clinical data and medical imaging, aided by TL, has the potential to provide more accurate disease
predictions, as demonstrated in disorders like Alzheimer’s disease and Parkinson’s disease. Furthermore, the
adoption of ensemble learning, where multiple pre-trained models are combined, is helping to enhance
performance by leveraging the strengths of different architectures.

Despite these advancements, several research gaps persist. One significant challenge in TL for precision
medicine is the issue of negative transfer, where the transmission of knowledge from the origin domain to the
destination domain does not improve, or even degrades, model performance. This is especially problematic
when the allocation of data between the source and destination domains is quite different, leading to suboptimal
results. Another gap is related to issues of data bias and confidentiality, especially within the framework of
sensitive healthcare information. There is an increasing need for techniques that mitigate biases in medical
datasets, such as those related to race, gender, or geographical location, to guarantee that models achieve broad
applicability and equity across varied populations. Additionally, while data privacy remains a critical concern,
federated learning models, where data remains decentralized, are showing promise in addressing these issues
while still allowing for collaborative learning across multiple institutions. Lastly, the complexity of integrating
TL into clinical settings remains a substantial challenge. Despite the promise of TL in research, translating
these models into real-world clinical applications requires addressing barriers such as the lack of standardized
datasets, variability in healthcare systems, and the interpretability of Al models. Clinicians often require clear,
understandable insights from models to make informed decisions, which calls for greater efforts in making Al
models more explainable. As the field moves forward, the integration of explainable Al (XAI) with transfer
learning techniques in precision medicine is an area that warrants significant research, particularly in ensuring
that medical professionals can trust and interpret Al-based recommendations effectively.

6. CONCLUSIONS

The integration of Transfer Learning (TL) in precision medicine has shown considerable promise across
various medical domains, offering an effective solution to address the challenges associated with restricted
access to data and high computational costs. As demonstrated by the numerous studies presented in the table,
TL has been effectively implemented across multiple fields, such as medical imaging, genomics, clinical data
analysis, disease classification, and emotion recognition. The ability of TL models to leverage pre-trained
networks and customize them for data tailored to particular tasks has led to improved model effectiveness in
applications spanning from early disease detection to patient-specific predictions. Within the domain of
medical imaging, TL has played a crucial role in improving the accuracy and efficiency of diagnostic systems,
particularly in the detection of diseases like cancer, COVID-19, and brain tumors. By using models such as
CNNs, ResNet, and DenseNet, TL has been able to improve feature extraction and decision-making processes
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in imaging modalities like X-rays, MRIs, and CT scans. These models, when fine-tuned with domain-specific
data, have demonstrated significant performance gains, enabling more precise and rapid diagnosis even in
resource-constrained environments. In genomics and clinical data analysis, TL has facilitated the extraction of
meaningful patterns from complex datasets, such as DNA methylation and pediatric health data. Techniques
like Bi-LSTM and Random Forest, integrated with TL approaches, have provided novel insights into disease
mechanisms and improved predictive models for conditions like chronic kidney disease and Parkinson’s
disease. The transferability of knowledge from general domains to specialized medical contexts has proven to
be a game-changer, especially in rare diseases where data scarcity is a major challenge. Moreover, TL has
made significant contributions to disease classification and emotion recognition. In the domain of chronic
disease prediction and classification, TL models have achieved high accuracy in predicting the onset and
progression of diseases like lung cancer and diabetes. Similarly, in emotion recognition, TL has been employed
to analyze complex datasets, such as driving simulation data, to understand human behavior better and predict
outcomes in real-world scenarios.
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