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In recent years, Transfer Learning (TL) models have demonstrated significant 

promise in advancing precision medicine by enabling the application of 

machine learning techniques to medical data with limited labeled 

information. TL overcomes the challenge of acquiring large, labeled datasets, 

which is often a limitation in medical fields. By leveraging knowledge from 

pre-trained models, TL offers a solution to improve diagnostic accuracy and 

decision-making processes in various healthcare domains, including medical 

imaging, disease classification, and genomics. The research contribution of 

this review is to systematically examine the current applications of TL models 

in precision medicine, providing insights into how these models have been 

successfully implemented to improve patient outcomes across different 

medical specialties. In this review, studies sourced from the Scopus database, 

all published in 2024 and selected for their "open access" availability, were 

analyzed. The research methods involved using TL techniques like fine-

tuning, feature-based learning, and model-based transfer learning on diverse 

datasets. The results of the studies demonstrated that TL models significantly 

enhanced the accuracy of medical diagnoses, particularly in areas such as 

brain tumor detection, diabetic retinopathy, and COVID-19 detection. 

Furthermore, these models facilitated the classification of rare diseases, 

offering valuable contributions to personalized medicine. In conclusion, 

Transfer Learning has the potential to revolutionize precision medicine by 

providing cost-effective and scalable solutions for improving diagnostic 

capabilities and treatment personalization. The continued development and 

integration of TL models in clinical practice promise to further enhance the 

quality of patient care. 
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1. INTRODUCTION 

Precision medicine seeks to deliver tailored healthcare grounded in personal attributes such as genetics, 

lifestyle, and environment [1]. However, one of the significant challenges in implementing precision medicine 

is the restricted access to high-quality, extensive data collections [2]. While genomic data, clinical records, and 

medical imaging hold valuable insights for personalized treatment, the scarcity of comprehensively labeled 

information hinders the development of robust predictive models [3]. Traditional machine learning (ML) 

methods often struggle to generalize across patient populations and disease types due to data limitations [4]. 

Furthermore, protection of sensitive information along with regulatory issues further complicate obtaining and 

distributing healthcare information across institutions. 

To address these difficulties, Transfer Learning (TL) has arisen as a viable approach. TL leverages 

knowledge learned from a large, well-curated dataset to improve the performance of models trained on smaller, 

more specialized datasets [5]. In the context of precision medicine, TL allows for the reuse of pretrained models 

across different medical domains, including genomics, health-related imaging, and evaluation of clinical 

datasets [6]. This strategy is especially beneficial for addressing the scarcity of data by enabling knowledge 

transfer from related tasks or datasets. By applying TL, models can improve diagnostic accuracy, reduce 

training time, and facilitate the integration of multi-modal data for better clinical decision processes in 

healthcare [7]. 

Recent progress in TL methodologies has greatly enhanced the forefront of medical AI. Researchers have 

effectively implemented TL across multiple healthcare fields, such as genomics, in which pretrained models 

on extensive genomic datasets are adapted to target particular categories of diseases [8]. In medical imaging, 

TL has been used to augment small datasets, enabling improved lesion detection and image segmentation [9]. 

Additionally, TL has shown promise in integrating multi-omics data, where models initially developed on a 

single omics dataset (for example in genomics) are repurposed for another domain (for instance proteomics or 

metabolomics) [10]. These breakthroughs are setting the stage for more accurate and scalable solutions in 

precision medicine. 

The originality of this study resides in its comprehensive exploration of TL applications across multiple 

domains of precision medicine, synthesizing recent findings to highlight the most promising strategies for 

model development. The contribution of this review is twofold: first, it consolidates the current state of TL 

applications in precision medicine; and second, it identifies the key challenges that remain, such as negative 

transfer and data heterogeneity. Furthermore, it provides insight into future directions that could enable further 

advancements, such as federated learning and the use of self-supervised models for pretraining on unlabeled 

medical data. By summarizing the cutting-edge applications of TL in precision medicine and pointing out the 

challenges and future research areas, this review aims to guide the development of more efficient, scalable, and 

adaptable machine learning models for personalized healthcare. 

 

2. CONCEPT OF TRANSFER LEARNING IN PRECISION MEDICINE 

Transfer Learning (TL) represents an artificial intelligence method which allows models or features 

derived from large, general datasets to be adapted and applied to smaller, task-specific datasets [11]. This 

method proves especially advantageous in precision medicine, since obtaining extensive annotated datasets is 

frequently difficult and expensive [12]. By shifting insights from a data-rich source domain to a target domain 

constrained by limited information, TL enables the development of accurate and efficient models without 

requiring extensive data collection for the target task [13]. This is particularly crucial in medical fields where 

datasets can be sparse and expensive, for instance in uncommon diseases or distinct patient cohorts [14]. 

Additionally, TL can help overcome the challenges of data heterogeneity in medical domains, where datasets 

can vary significantly due to differences in population characteristics, healthcare systems, or even data 

collection methods [15]. By transferring knowledge across related domains, TL allows models to better 

generalize and adapt to the nuances of diverse patient groups, ensuring that predictive models remain robust 

and effective when applied to different clinical contexts [16]. This flexibility is crucial to enhance diagnostic 

precision and refine individualized therapeutic approaches in real-world medical settings [17]. 

 

2.1. Target Data Types 

When dealing with labeled data, Transfer Learning methods often fall under inductive transfer learning. 

This approach is used when the model is applied to a target domain where both input data and labeled outputs 

are available [18]. In precision medicine, this can be seen in applications such as disease diagnosis or patient 

outcome prediction where existing datasets (e.g., from clinical trials) contain both the inputs (patient data) and 

the corresponding outputs (disease labels or clinical outcomes). Inductive Transfer Learning enables models 

to generalize from these datasets to predict on unseen medical data with higher accuracy [19]. On the other 

hand, unannotated datasets within healthcare fields necessitate unsupervised transfer learning. This technique 
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is employed when the target domain lacks labeled data but still contains useful input data (e.g., raw medical 

images or genomic data) [20]. The main objective is to derive informative attributes or abstractions out of these 

datasets without the necessity for explicit annotations, which can be particularly useful in genomics and 

medical imaging scenarios in which labeled information is frequently limited [21]. Furthermore, transductive 

transfer learning is implemented when a model is shifted to a related domain but where the target data may be 

partially labeled or consists of a small number of labeled samples, helping to fine-tune the model with minimal 

labeled data [22]. 

 

2.2. Methods in Transfer Learning 

In the context of Methods in Transfer Learning, various techniques can be applied to achieve better 

performance in precision medicine. These methods can be categorized as follows: 

• Instance-based Transfer Learning focuses on relocating particular data samples from the origin domain 

to the destination domain [23]. This method works well in medical applications where specific case 

histories from one disease or treatment may be applied to similar new cases. 

• Feature-based Transfer Learning aims to align and transfer feature representations across domains [24]. 

In precision medicine, this method is useful for tasks like medical image analysis, where the features of 

one set of images (e.g., from one hospital or machine) are transferred to improve the analysis of another 

set with different characteristics (e.g., from another hospital or imaging modality). 

• Model-based Transfer Learning involves relocating the fully developed model from the origin domain to 

the destination domain [25]. This approach is particularly effective in scenarios like disease prediction or 

drug discovery, where deep learning algorithms developed using extensive datasets (e.g., gene expression 

data) are applied to smaller, domain-specific medical datasets. 

• Fine-tuning knowledge transfer learning adjusts previously trained algorithms to the target domain’s data 

[26]. In precision medicine, this is widely used where an already developed model built upon an extensive 

dataset (e.g., general patient data) is further optimized with a narrower and more targeted dataset (e.g., a 

particular cancer type or a region with unique healthcare characteristics). 

Every one of these methods serves a crucial function in enabling the adaptability of models to diverse 

medical data, facilitating the accurate prediction of disease outcomes, patient care, and therapeutic 

interventions, even in the face of limited labeled data [27]. Thus, Transfer Learning demonstrates strong 

potential in advancing precision medicine through enhancing computational effectiveness and forecast 

precision in healthcare applications can be seen in Figure 1 [28]. 

 

 
Figure 1. Types of Transfer Learning Models 

 

3. CURRENT APPLICATIONS IN PRECISION MEDICINE 

The application of Transfer Learning (TL) in precision medicine has attracted considerable focus in the 

past few years, demonstrating its capacity to enhance medical results by providing more accurate diagnoses, 

personalized treatments, and enhanced decision-making processes [29][30]. This section reviews the current 

applications of TL models in precision medicine, drawing insights from recent research. The articles used in 
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this review were sourced from the Scopus database, with a focus on publications released in 2024. Only "open 

access" articles were selected to guarantee openness and clarity of the study. To identify relevant studies, the 

following search query was used ("transfer learning" OR "pretrained model" OR "fine-tuning") AND 

("precision medicine" OR "personalized medicine") AND ("machine learning" OR "deep learning" OR 

"artificial intelligence"). The search results yielded a wide range of studies that demonstrate how TL techniques 

are applied across various areas of precision medicine, including medical imaging, genomics, disease 

classification, and clinical data analysis. The following are journal articles that discuss applications of transfer 

learning models in precision medicine which are presented in Table 1 and Figure 2. 

 
Table 1. Selected Articles Related to Transfer Learning Models for Precision Medicine 

Ref Author Year Application Area Dataset Source Model Used Transfer Method 

[31] Amiri, et al. 2024 

COVID-19 

Decision Support 
System 

COVID-19 World 
Dataset (Our World in 

Data), ECDC, 

GISAID 

Neural Networks (Transfer 
Learning), Multi-attribute 

Decision-Making 

(MADM) 

Fine-tuning 

(Transfer Learning) 

[32] 

Haque, et 

al. 
2024 

Medical Imaging 
(Leukemia 

Diagnostics) 

Kaggle Datasets (C-
NMC, Leukemia 

Dataset 0.2) 

AlexNet, Inception-

ResNet, XceptionNet, 

RetinaNet, CenterNet, 
DCNN 

Fine-tuning, Feature-

based 

[33] 

Mohan, et 

al. 
2024 

Medical Imaging 
(COVID-19 

Detection from 

Chest X-rays) 

COVID-19 

Radiography Database 
(Kaggle), Chest X-ray 

Images Pneumonia 

and COVID-19 
(Mendeley) 

VGG16, Inception ResNet 

V2, CNN 

Fine-tuning, Transfer 

Learning, CNN from 
Scratch 

[34] 

Houssein, et 

al. 
2024 

Medical Imaging 

(Skin Cancer 
Classification) 

HAM10000, ISIC-

2019 

Deep Convolutional 

Neural Network (DCNN), 
VGG16, VGG19, 

DenseNet121, 

DenseNet201, 

MobileNetV2 

Fine-tuning, Transfer 

Learning 

[35] Duan, et al. 2024 

Medical Imaging 

(Meningioma Ki-
67 Prediction) 

MRI Images (318 

cases) 

Deep Transfer Learning 

(DTL), CNN (ResNet50) 

Fine-tuning, Model-

based 

[36] Ma, et al. 2024 

Medical Imaging 

(Autism Spectrum 
Disorder 

Classification) 

Shenzhen Children's 
Hospital 

Contrastive Variational 

AutoEncoder (CVAE), 

Random Forest 

Transfer Learning, 
Fine-tuning 

[37] Natha, et al. 2024 
Medical Imaging 

(Brain Tumor 

Detection) 

Kaggle Brain Tumor 

MRI Dataset 

AlexNet, VGG19, Stack 
Ensemble Transfer 

Learning (SETL_BMRI) 

Fine-tuning, 

Ensemble Learning 

[38] Rasa, et al. 2024 

Medical Imaging 

(Brain Tumor 

Detection) 

BRATS 2015, Brain 

Tumor Classification 

Dataset (Kaggle) 

VGG16, ResNet50, 
MobileNetV2, 

DenseNet201, 

EfficientNetB3, 
InceptionV3 

Fine-tuning 

[39] Otaibi, et al. 2024 

Medical Imaging 

(Brain Tumor 

Detection) 

Multi-class Brain 

Tumor MRI Image 
Dataset (21,672 

images) 

2D-CNN, VGG16, k-NN 
Classifier 

Fine-tuning, Transfer 
learning 

[40] 

Moran, et 

al. 
2024 

Medical Imaging 
(COPD Detection 

using ECG) 

ECG signals (COPD 

and Healthy subjects) 

Xception, VGG-19, 
InceptionResNetV2, 

DenseNet-121 

Fine-tuning and 

Transfer Learning 

[41] 

Kumar, et 

al. 
2024 

Medical Imaging 
(Alzheimer's 

Disease Diagnosis) 

Kaggle Dataset 

(12,936 MRI images) 
GoogLeNet, FFNN 

Fine-tuning, Feature 

extraction 

[42] 

Azizian, et 
al. 

2024 
Genomics 

(miRNA-protein 

interactions) 

RBPSuite, ENCODE, 
EVPsort, CLASH 

Bi-LSTM, CNN, Cosine 
Similarity 

Transfer learning, 
Cosine similarity 

[43] 

Madduri, et 

al. 
2024 

Medical Imaging 

(Diabetic Eye 
Disease detection) 

DRISHTI-GS, 
Messidor-2, Messidor, 

Kaggle cataract 

dataset 

Modified ResNet-50, 

DenseUNet 

Two-phase transfer 

learning (ResNet-50 

for classification, 
DenseUNet for 

segmentation) 

[44] Gore, et al. 2024 

Disease 

Classification 

(Non-

communicable 
diseases) 

NCBI GEO (GSE 
datasets) 

Variational Autoencoder 

(VAE) with transfer 

learning from CancerNet 

Transfer learning 

(CancerNet to 

NCDs) 
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Ref Author Year Application Area Dataset Source Model Used Transfer Method 

[45] 

Taghizadeh, 

et al. 
2024 

EEG Motor 

Imagery 
Classification 

(Brain-Computer 

Interface) 

Physionet MI Dataset 
1D-CNN with Semi-deep 

Fine-tuning 

Transfer learning 

with feature-
extracted data, fine-

tuning pre-trained 

model 

[46] Raza, et al. 2024 

Medical Imaging 
(Diabetic 

Retinopathy, MRI 

Brain Tumor) 

Diabetic Retinopathy 

Dataset, MRI Brain 
Tumor Dataset 

Mobile-Net, CNN, PSO-

Optimized 

Transfer learning 

with Particle Swarm 

Optimization (PSO) 
and Constriction 

Factor 

[47] 

Ansari, et 

al. 
2024 

Medical Imaging 

(Lung Cancer 
Detection) 

LIDC-IDRI 

ResNet-50, VGG-16, 
ResNet-101, VGG-19, 

DenseNet-201, 

EfficientNet-B4 

Transfer learning 

with hyperparameter 
tuning 

[48] 

Alturki, et 

al. 
2024 

Clinical Data 

(Chronic Kidney 

Disease 
Prediction) 

UCI CKD dataset 
XGBoost, Random Forest, 

Extra Trees Classifier 

(TrioNet ensemble) 

KNN imputer for 

missing values, 

SMOTE for class 
imbalance 

[49] 

Jakkaladiki, 

et al. 
2024 

Medical Imaging 

(Breast Cancer 
Diagnosis) 

BreakHis (Kaggle), 

Wisconsin Breast 
Cancer (UCI) 

CNN, DenseNet, Hybrid 

Transfer Learning 

Transfer learning 

with attention 
mechanism 

[50] Ragab, et al. 2024 

Medical Imaging 

(COVID-19 
detection from 

chest X-rays) 

COVID-ChestXRay 
Dataset 

DenseNet121, 

Autoencoder-LSTM, 

Firefly Algorithm (FFA) 

Hybrid transfer 

learning with FFA 
for hyperparameter 

optimization 

[51] Koshy, et al. 2024 

Medical Imaging 
(Breast Cancer 

Histopathology 

Classification) 

BreaKHis 

ResNet-18, CNN, 

Levenberg–Marquardt 
Optimization 

Transfer learning 

with fine-tuning 

[52] 

Salinas, et 
al. 

2024 

Emotion 

Recognition 

(Driver Emotion) 

CARLA Simulator 

(Simulated Driving 

Data) 

CNN (VGG16, Inception 
V3, EfficientNet) 

Transfer learning 
with fine-tuning 

[53] Li, et al. 2024 

Clinical Data 

(Pediatric 

Knowledge 
Extraction) 

Mass General 

Brigham (MGB), 

Boston Children’s 
Hospital (BCH) 

MUGS (Multisource 

Graph Synthesis), SVD 

Transfer learning, 
Graph-based feature 

engineering 

[54] Wang, et al. 2024 

Clinical Data 

(Epilepsy 

Recognition) 

University of Bonn 
EEG Dataset 

Multi-View Transfer 

Learning (MVTL-LSR), 

CNN 

Multi-view & 

transfer learning 
with privacy 

protection 

[55] 

Enguita, et 

al. 
2024 

Genomics (DNA 

Methylation) 

EWAS Data Hub 
(Illumina 450K and 

EPIC arrays) 

Autoencoders (NCAE), 
Deep Neural Networks 

(DNN) 

Transfer learning, 

NCAE embedding 

[56] Roy, et al. 2024 
Clinical Data 

(Human Activity 

Detection) 

WISDM (Wireless 
Sensor Data Mining 

Lab dataset) 

Semi-Supervised Learning 

(SSL), k-means, GMM 

On-device learning 
with sparse labeling 

and clustering 

[57] Ragab, et al. 2024 
Medical Imaging 

(Colorectal Cancer 

Detection) 

Warwick-QU Dataset 

Dense-EfficientNet, Slime 

Mould Algorithm (SMA), 

Deep Hopfield Neural 

Network (DHNN) 

Transfer learning, 
hyperparameter 

optimization 

[58] 

Hoseny, et 
al. 

2024 

Medical Imaging 

(Diabetic 
Retinopathy 

Classification) 

Kaggle Dataset 

(Diabetic Retinopathy 

Images) 

VGG16, CNN, AE, 
CLAHE 

Transfer learning 

with data cleansing 
and enhancement 

filters 

[59] 

Siddique, et 

al. 
2024 

Medical Imaging 
(Tumor 

Classification) 

Kaggle (Brain Tumor 

Images) 
Inception-V3, CNN 

Transfer learning 
with Particle Swarm 

Optimization (PSO) 

[60] Xue, et al. 2024 

Clinical Data 
(Parkinson’s 

Disease Severity 

Prediction) 

Parkinson's 

Telemonitoring 
Dataset 

Random Forest (RF), 

Shapley Value, Game-
based Transfer 

Patient-specific 
Game-based 

Transfer (PSGT), 

Instance Transfer 

[61] 

Kunjumon, 
et al. 

2024 

Medical Imaging 

(Esophageal 

Cancer Diagnosis) 

Kaggle Endoscopic 
Image Dataset 

Inception-ResNet V2, 
CNN 

Transfer learning 
with fine-tuning 

[62] Ajani, et al. 2024 

Medical Imaging 

(COVID-19 

Screening) 

COVID-19 Chest X-

ray (CXR), CT 

Dataset 

GoogleNet, SqueezeNet, 
CNN 

Transfer learning 
with fine-tuning 

[63] 

Djaroudib, 
et al. 

2024 

Medical Imaging 

(Skin Cancer 

Diagnosis) 

Kaggle (HAM10000, 
Skin Cancer MNIST) 

VGG16, CNN 
Transfer learning 
with fine-tuning 
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Ref Author Year Application Area Dataset Source Model Used Transfer Method 

[64] 

Alzubaidi, 
et al. 

2024 

Medical Imaging 

(Shoulder Implant 

Classification) 

UCI Shoulder Implant 
X-ray Dataset 

Xception, 

InceptionResNetV2, 
MobileNetV2, 

EfficientNet, DarkNet19 

Self-Supervised 

Pertaining (SSP), 

Transfer learning 

[65] Hong, et al. 2024 
Clinical Data 

(Risk Prediction) 

FOS, ARIC, MESA, 

REGARDS 

Logistic Regression, 

Translasso 

Federated learning, 
Transfer learning, 

ROSE 

[66] 

Alnuaimi, et 

al. 
2024 

Medical Imaging 
(Skin Diseases 

Detection) 

Kaggle DermNet, 
Google Images, Atlas 

Dermatology 

MobileNet, DenseNet121, 

CNN 

Transfer learning 

with fine-tuning 

[67] Xiang, et al. 2024 
Clinical Data 
(Predictive 

Modeling) 

PM2.5, IHS, HUA, 

Wine, eICU 

Random Forest (RF), 
Federated Learning (FL), 

Model Averaging 

Federated Transfer 

Learning (FTRF) 

[68] 

Khouadja, 

et al. 
2024 

Medical Imaging 

(Lung Cancer 
Diagnosis) 

Military Hospital of 

Tunis (DICOM CT 
scans) 

ResNet50, InceptionV3, 

VGG16 

Transfer learning 

with pre-trained 3D 

ResNet models from 

Tencent MedicalNet 

[69] 

Sambyal, et 

al. 
2024 

Medical Imaging 

(Calibration of 

Deep Neural 
Networks) 

Diabetic Retinopathy, 

Histopathologic 

Cancer, COVID-19 
datasets 

ResNet18, ResNet50, 

WideResNet 

Transfer learning, 

Rotation-based self-

supervised learning 
(SSL) 

[70] 

Benbakreti, 

et al. 
2024 

Medical Imaging 

(Breast Cancer 
Classification) 

Inbreast, MIAS, 

DDSM 

ResNet18, AlexNet, 

InceptionV3 

Transfer learning 

with pre-trained 
models 

 

The section presents a comprehensive review of how Transfer Learning (TL) models are currently being 

applied across various fields in precision medicine. These models are crucial for advancing medical 

diagnostics, particularly in contexts where data scarcity or complexity poses significant challenges. One of the 

key areas of medical imaging is the application of TL for diagnostic purposes, such as COVID-19 detection 

and cancer classification. Amiri et al. [31] developed a COVID-19 decision support system using neural 

networks, leveraging datasets from sources like Our World in Data and GISAID, with a fine-tuning method. 

Similarly, Ragab et al. [50] focused on chest X-ray images for COVID-19 detection using DenseNet121 and 

Autoencoder-LSTM with hybrid transfer learning for hyperparameter optimization. This shows the broad 

utility of TL in diagnosing infectious diseases in urgent public health situations. Additionally, for skin cancer 

classification, Houssein et al. [34] applied deep convolutional neural networks (DCNN) and VGG models, 

showcasing the effectiveness of TL in dermatological diagnostics using datasets like HAM10000 and ISIC-

2019. TL models are also widely used for brain tumor detection and leukemia diagnostics. Natha et al. [37] 

and Rasa et al. [38] explored TL for brain tumor detection, using models such as ResNet50, VGG16, and 

MobileNetV2 on MRI datasets from Kaggle and BRATS 2015. Their results underscore the potential of TL to 

enhance tumor detection and improve diagnostic accuracy. For leukemia detection, Haque et al. [32] employed 

fine-tuning and feature-based TL methods using AlexNet and Inception-ResNet on datasets from Kaggle, 

demonstrating how TL helps in processing complex medical imaging data for blood cancer diagnoses. In the 

field of genomics, Azizian et al. [42] utilized TL to study miRNA-protein interactions, applying Bi-LSTM and 

CNN models with cosine similarity methods. This approach facilitates the analysis of genomic data, which 

often suffers from sparsity. Similarly, in chronic kidney disease prediction, Alturki et al. [48] used XGBoost 

and random forest classifiers to make predictions based on clinical datasets, demonstrating how TL is applied 

to clinical data to forecast disease outcomes. 

Clinical data is another area where TL has shown significant promise, particularly in predictive modeling. 

Wang et al. [55] employed federated learning combined with TL to analyze risk factors for chronic diseases 

using datasets like FOS, ARIC, and MESA, ensuring data privacy while still enhancing predictive accuracy. 

Xue et al. [60] applied TL with Random Forest and Shapley value models to predict Parkinson’s disease 

severity using telemonitoring datasets, illustrating the integration of TL in clinical decision-making processes. 

In diabetic retinopathy classification, Hoseny et al. [58] used transfer learning with fine-tuning on VGG16 and 

CNN models, focusing on the Kaggle diabetic retinopathy dataset. Their research shows how TL helps in 

processing and enhancing medical images for ophthalmic disease diagnosis. Similarly, in breast cancer 

diagnosis, Jakkaladiki et al. [49] used hybrid TL models combined with attention mechanisms, demonstrating 

how TL can aid in cancer detection from imaging datasets like BreakHis and Wisconsin Breast Cancer. Several 

other studies also demonstrate TL applications in disease classification, emotion recognition, and activity 

detection. For example, Kunjumon et al. [61] applied transfer learning with fine-tuning to diagnose esophageal 

cancer using endoscopic image datasets. Similarly, Ajani et al. [62] focused on COVID-19 screening from 

chest X-rays and CT images using GoogleNet and SqueezeNet, further emphasizing the role of TL in improving 
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diagnostic tools for infectious diseases. Lastly, federated learning is becoming increasingly important in 

medical applications as demonstrated by Xiang et al. [67], who applied federated transfer learning for 

predictive modeling in clinical data, further enhancing the utility of TL across decentralized datasets while 

maintaining privacy. 

 

 
Figure 2. Applications of Transfer Learning Models in Precision Medicine 

 

4. STRENGTHS AND LIMITATIONS 

4.1. Strengths of Transfer Learning in Precision Medicine 

Transfer learning (TL) offers significant advantages in precision medicine, particularly in addressing the 

constraints arising from scarce medical datasets. One of its key advantages is its capacity to exploit pretrained 

models built on large, heterogeneous datasets, which can be further tuned or customized to particular clinical 

applications. This approach lessens the requirement for large amounts of labeled data in target domains, which 

is often difficult and expensive to obtain in healthcare contexts, such as in rare diseases or specialized imaging 

datasets [71][72]. By transferring knowledge from a data-rich source domain to a data-limited target domain, 

TL enables the development of highly accurate models without requiring extensive data collection for every 

medical task. Another strength of TL in precision medicine is its ability to enhance the generalizability of 

machine learning models. Fine-tuning models on domain-specific datasets helps improve performance on small 

datasets while reducing overfitting. This is particularly valuable in medical applications like diagnostic imaging 

or genomics, where variability in patient data can significantly impact the model's accuracy. For example, TL 

models in medical imaging, for example, those applied to brain tumor detection or skin cancer classification, 

have shown impressive results when fine-tuned from pretrained architectures such as VGG16, ResNet, and 

DenseNet [73][74]. Furthermore, TL models can be adapted to a broad array of tasks, including disease 

detection, prediction, and classification, across different medical domains, enhancing their versatility in clinical 

settings [75][76]. 

 

4.2. Limitations of Transfer Learning in Precision Medicine 

Despite its many strengths, TL in precision medicine also faces a number of constraints. One of the 

primary challenges is the risk of negative transfer, where the knowledge transferred from the source domain 

may not be relevant or beneficial for the target domain. This problem emerges when the differences between 

the source and target domains are too large, leading to suboptimal model effectiveness. As an example, 

algorithms developed on general medical imaging datasets may struggle to perform well when applied to highly 

specialized conditions or rare diseases with minimal data availability [77][78]. Additionally, TL models are 

often sensitive to domain shifts, such as variations in imaging equipment or demographic characteristics, which 

can compromise their ability to generalize effectively in real-world clinical settings. Another limitation is the 

dependency upon the standard of the pre-trained models along with the originating datasets. The success of TL 
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heavily relies on the quality and representativeness of the dataset used for the model’s initial training. If the 

source data is biased, unbalanced, or unrepresentative of the target population, the transfer of knowledge may 

lead to poor model performance or biased predictions in the target domain. As an illustration, TL models built 

on data originating from a particular geographic location or patient group might fail to achieve satisfactory 

results when implemented on groups with distinct demographic traits or varying medical conditions [79][80]. 

Furthermore, while TL can diminish the dependence on vast quantities of annotated datasets, the task of 

refining models still demands substantial computing capacity and specialized knowledge, making it less 

accessible for some healthcare institutions, especially those with limited technical infrastructure [81]. 

 

5. EMERGING TRENDS AND RESEARCH GAPS 

The application of the concept of transfer learning (TL) in precision medicine has attracted notable 

momentum over the past few years, driven by the increasing need for high-quality models in medical domains 

that often suffer from limited labeled data. One of the prominent trends is the integration of TL with advanced 

deep learning frameworks, especially CNNs, in medical imaging and genomics. For instance, TL methods are 

being used to adapt models trained using extensive datasets like ImageNet or GoogleNet to specialized medical 

datasets, which enables high performance even with relatively small medical image datasets. This approach 

has been particularly beneficial in areas like cancer detection, skin lesion classification, and brain tumor 

detection, where acquiring large annotated datasets is costly and time-consuming. Additionally, fine-tuning 

pre-trained models has become a common practice, significantly improving model accuracy without requiring 

the exhaustive retraining of models from scratch. Another emerging trend is the increasing use of multi-modal 

transfer learning, where models leverage information originating from multiple sources, including medical 

imaging, clinical documentation, and genomic data. This hybrid approach allows for a more comprehensive 

analysis of patient data, integrating insights from multiple domains to generate a broader and more integrated 

perspective on patient health. For example, in the detection of diabetic retinopathy, researchers combine image 

data from retinal scans with patient health records to create more robust predictive models. The combination 

of clinical data and medical imaging, aided by TL, has the potential to provide more accurate disease 

predictions, as demonstrated in disorders like Alzheimer’s disease and Parkinson’s disease. Furthermore, the 

adoption of ensemble learning, where multiple pre-trained models are combined, is helping to enhance 

performance by leveraging the strengths of different architectures. 

Despite these advancements, several research gaps persist. One significant challenge in TL for precision 

medicine is the issue of negative transfer, where the transmission of knowledge from the origin domain to the 

destination domain does not improve, or even degrades, model performance. This is especially problematic 

when the allocation of data between the source and destination domains is quite different, leading to suboptimal 

results. Another gap is related to issues of data bias and confidentiality, especially within the framework of 

sensitive healthcare information. There is an increasing need for techniques that mitigate biases in medical 

datasets, such as those related to race, gender, or geographical location, to guarantee that models achieve broad 

applicability and equity across varied populations. Additionally, while data privacy remains a critical concern, 

federated learning models, where data remains decentralized, are showing promise in addressing these issues 

while still allowing for collaborative learning across multiple institutions. Lastly, the complexity of integrating 

TL into clinical settings remains a substantial challenge. Despite the promise of TL in research, translating 

these models into real-world clinical applications requires addressing barriers such as the lack of standardized 

datasets, variability in healthcare systems, and the interpretability of AI models. Clinicians often require clear, 

understandable insights from models to make informed decisions, which calls for greater efforts in making AI 

models more explainable. As the field moves forward, the integration of explainable AI (XAI) with transfer 

learning techniques in precision medicine is an area that warrants significant research, particularly in ensuring 

that medical professionals can trust and interpret AI-based recommendations effectively. 

 

6. CONCLUSIONS 

The integration of Transfer Learning (TL) in precision medicine has shown considerable promise across 

various medical domains, offering an effective solution to address the challenges associated with restricted 

access to data and high computational costs. As demonstrated by the numerous studies presented in the table, 

TL has been effectively implemented across multiple fields, such as medical imaging, genomics, clinical data 

analysis, disease classification, and emotion recognition. The ability of TL models to leverage pre-trained 

networks and customize them for data tailored to particular tasks has led to improved model effectiveness in 

applications spanning from early disease detection to patient-specific predictions. Within the domain of 

medical imaging, TL has played a crucial role in improving the accuracy and efficiency of diagnostic systems, 

particularly in the detection of diseases like cancer, COVID-19, and brain tumors. By using models such as 

CNNs, ResNet, and DenseNet, TL has been able to improve feature extraction and decision-making processes 
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in imaging modalities like X-rays, MRIs, and CT scans. These models, when fine-tuned with domain-specific 

data, have demonstrated significant performance gains, enabling more precise and rapid diagnosis even in 

resource-constrained environments. In genomics and clinical data analysis, TL has facilitated the extraction of 

meaningful patterns from complex datasets, such as DNA methylation and pediatric health data. Techniques 

like Bi-LSTM and Random Forest, integrated with TL approaches, have provided novel insights into disease 

mechanisms and improved predictive models for conditions like chronic kidney disease and Parkinson’s 

disease. The transferability of knowledge from general domains to specialized medical contexts has proven to 

be a game-changer, especially in rare diseases where data scarcity is a major challenge. Moreover, TL has 

made significant contributions to disease classification and emotion recognition. In the domain of chronic 

disease prediction and classification, TL models have achieved high accuracy in predicting the onset and 

progression of diseases like lung cancer and diabetes. Similarly, in emotion recognition, TL has been employed 

to analyze complex datasets, such as driving simulation data, to understand human behavior better and predict 

outcomes in real-world scenarios. 
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