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Maintaining railway track geometry integrity is essential to ensuring
transportation safety and predictive maintenance. Conventional manual
inspection methods are limited by low sampling frequency, subjective
interpretation, and delayed anomaly detection. This study introduces a real-
time, embedded monitoring system using VL53L0X infrared laser sensors
and an MPU6050 IMU to measure gauge, cross-level height, and inclination.
Sensors are mounted on a lightweight aluminum trolley and sampled every
0.5 seconds using an Arduino-based platform. A Kalman Filter reduces
measurement noise, with tuned covariance matrices based on field
calibration. Filtered outputs are clustered via K-Means (K = 2), validated by
the Elbow Method and Silhouette Score (>0.6). Maintenance categories are
assigned through a fuzzy logic system, with a £1 mm sensitivity analysis
confirming >85% decision stability. Field results demonstrate a measurement
noise, achieving RMSE and MAE values of 0.8165 mm and 0.3175 mm for
gauge and height, and 0.3086° and 0.0952° for inclination, respectively and
a SNR gain from 0.5 dB to 21.7 dB. The low-cost, modular setup supports
scalable, condition-based maintenance and demonstrates robustness in noisy
environments. This approach offers a practical foundation for future
integration with predictive analytics and digital twin technologies in smart
rail infrastructure.
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1. INTRODUCTION

Railways remain a critical mode of global mobility and trade, offering an efficient and environmentally
sustainable means of transporting people and goods over long distances. However, the safety and integrity of
railway infrastructure are paramount, with track maintenance playing a vital role in ensuring uninterrupted and
secure train operations. Among the most significant risks to rail safety is derailment, which can result in severe
economic losses, environmental hazards, and human casualties. For instance, a case of track damage resulting
from height differences. Understanding derailment statistics, causes, and consequences is essential for
implementing effective prevention strategies [30].

Derailments are a persistent global issue. In the United States, As reported an average of 400 derailments
annually over a span of 17 years [30]. According to the Federal Railroad Administration (FRA), this translates
to approximately 1.85 derailments per million train-miles. Canada reports a slightly lower rate of 1.7
derailments per million train-miles. In contrast, countries such as Germany have achieved even lower rates (0.7
per million train-miles), reflecting disparities in infrastructure investment and monitoring technology [31].
These incidents cause service disruptions and impose heavy financial and operational burdens, further
emphasizing the need for proactive monitoring systems. Human factors such as operator error and design flaws
are also leading contributors to derailments. Between 1980 and 2019, railway accidents across Europe were
largely attributed to collisions, derailments, and incidents at crossings, underscoring the persistent nature of
this problem [51]. Derailments are caused by multiple interrelated factors, including human error, infrastructure
faults, and rolling stock failures. Inadequately designed railway systems amplify human error risks [52]. Track
irregularities such as buckling, misalignment, and rail damage are frequently cited as precursors to derailments
[53][54]. Coupler failures are also a major concern; Appoh and Yunusa-Kaltungo reported 133 derailments
involving over 770 railcars in the U.S. due to such failures [55]. Equipment malfunctions, such as overheated
axle boxes (hot boxes), contribute to approximately 5% of derailments [59]. Environmental influences such as
extreme weather further compound these risks. Rungskunroch highlighted how weather extremes degrade
infrastructure resilience and increase the likelihood of derailments [74]. Likewise, [81] and [82] emphasized
that natural disasters compromise track integrity, calling for a comprehensive risk management strategy.

The economic consequences of derailments extend far beyond immediate repair costs. Significant
expenditures are often associated with infrastructure damage and environmental contamination especially when
hazardous materials (HAZMAT) are involved [52]. Lim and Kim demonstrated the considerable financial
losses tied to weather-induced railway accidents [83]. Reports estimate that derailment-related service
disruptions can lead to revenue losses between USD 10,000 and 25,000 per hour, depending on the corridor
and cargo type [84]. Dangerous goods incidents also result in higher insurance premiums and liability costs
[85]. Over time, such events can inflict reputational damage and erode public confidence in rail systems [86].
Therefore, workforce training and modern monitoring technologies are essential elements of any effective
prevention strategy [87]. Advanced forecasting models, like those proposed by Lim and Kim, offer valuable
tools for optimizing infrastructure investments and improving economic resilience [93].

Derailments also result in serious human and environmental consequences. In India alone, 17,993 rail
accidents in 2021 led to 16,431 fatalities and 1,852 injuries. Esmaeeli emphasized the importance of
individualized risk assessments to estimate potential casualties [52]. Beyond physical harm, the psychological
impact on survivors and witnesses is an underexplored area. Environmentally, derailments involving
HAZMAT can be disastrous. The 2023 East Palestine, Ohio derailment, in which vinyl chloride and other
hazardous chemicals were released, required mass evacuations and raised long-term public health concerns
[95]. Toxic spills can cause long-term damage to land, water, and biodiversity, highlighting the need for robust
emergency preparedness frameworks [97].

Conventional manual inspection methods remain widely used but are increasingly inadequate for modern
railway networks. These techniques are time-intensive, labor-dependent, and reliant on subjective human
interpretation. Visual inspections are prone to human error and inconsistency due to variability in inspector
expertise [52],[98]. Large-scale networks make full manual inspections impractical due to time and physical
constraints [99], and limited inspection windows hinder comprehensive assessments [100]. Adverse weather
further delays or compromises inspections [101]. Moreover, traditional methods have high false-negative rates
and lack the frequency to detect problems before they escalate [102]. In most railway networks, manual
inspections are typically performed at monthly or biweekly intervals, which limits the ability to detect rapidly
emerging defects and compromises the timeliness of maintenance interventions [100]. To address these
limitations, sensor technologies have emerged as effective solutions for real-time track geometry monitoring.
Table 1 provides a comparative analysis of common sensor types, outlining their performance advantages and
limitations. Among them, the VL53L0X laser and MPU6050 Inertial Measurement Unit (IMU) sensors were
selected for this study due to their favorable balance of precision, real-time capability, and cost-efficiency.
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Based on this comparison, the integration of VL53L0X and MPU6050 sensors offers an optimal trade-
off between cost, scalability, and functional performance, forming the basis for the proposed railway
monitoring platform in this study. However, to date, no existing railway geometry monitoring system
simultaneously offers real-time accuracy, scalability, and cost-effectiveness through an integrated sensor fusion
framework [1][2]. The research contribution is for advancing intelligent, condition-based railway maintenance
through the integration of multi-modal sensor technologies for real-time track geometry monitoring. The
proposed system combines laser infrared sensors and an IMU mounted on a modular mobile platform to
measure track gauge, height, and inclination with high precision [3]. By employing Kalman filtering for signal
denoising, K-Means clustering for anomaly detection, and fuzzy logic for decision support, the system
transforms raw measurement data into actionable maintenance insights. Experimental results demonstrate a
substantial reduction in measurement noise, achieving Root Mean Square Error (RMSE) and Mean Absolute
Error (MAE) values of 0.8165mm and 0.3175 mm for width and height, and 0.3086° and 0.0952° for
inclination, respectively. This integrated approach not only mitigates the limitations of manual inspections,
such as low frequency and operator bias, but also offers a scalable, low-cost, and data-driven solution aligned
with modern railway infrastructure management strategies. The platform paves the way for predictive
maintenance models and digital twin applications, marking a shift toward proactive, efficient, and safer rail
operations.

Table 1. Comparative Analysis of Sensor Technologies for Railway Track Geometry Monitoring

Sensor Type Advantages Limitations
. - — " - —
Laser VL53LOX Non-contact, hlgh precision (up to £1 mm), compact, Susceptlbl_e to surfa_ce reflectivity and
dynamic tracking, cost-effective. ambient light interference.
IMU MPU6050 Real-time motion tracking, compact, widely available. Drift over time, negds filtering and
calibration.
Fiber Bragg Grating Immune to electromagnetic 1'nterference, accurate strain Expensive, complex installation.
(FBG) sensing.
Accelerometers Real-time vibration detection, low cost. Require advanc_ed signal processing for
meaningful results.
Optical Cameras Rich visual data for inspection. High data volume, llght%ng dependent, slow
processing.
RFID Simple installation, low cost. Limited data scope, not suitable for precise

geometry analysis.

2. METHODS

This section describes the sensor characteristics, data acquisition hardware, post processing algorithms,
experimental arrangement, and validation metrics employed in this work. The aim is to offer a detailed, clear
description of the procedure that has led to the design and testing of the integrated sensor system for railway
track geometry monitoring.

2.1. System Design, Overview and Sensors Calibration
The developed integrated sensor system in this study is aimed at overcoming the limitations of the

conventional manual track inspection, taking fully real-time measured data with the benefits of automating,

high-accuracy measurement and frequent monitoring of critical geometry parameters of the track. The sensor
system is modular by design, combining several sensor technologies for a broad range of the data available.

This multi-sensor strategy increases redundancy, and reliability in the system of sensors is enhanced,

contributing to sound design methodology for integrated sensor systems in railway track geometry

measurement [32]. The wiring schematic of the sensors through the data acquisition system is illustrated in

Figure 1. It consists of the following major components:

e  Sensors: The VL53L0X laser infrared sensor is used for non-contact measurement of track gauge and
height. This sensor was selected due to its ability to quickly detect distances in both dynamic and static
conditions, with an absolute measurement range of up to 2 meters across surfaces of varying colours. It
is capable of real-time object detection at rates up to 50 Hz (i.e., every 20 ms), while maintaining low
power consumption and offering cost-effective performance.

e Inclination is measured using the MPU6050 Inertial Measurement Unit (IMU). This sensor was chosen
for its affordability and ability to detect motion and orientation. The MPU6050 is an integrated 6-axis
IMU that combines a 3-axis MEMS accelerometer (+8 g) and a 3-axis MEMS gyroscope (£2000°/s),
making it suitable for real-time dynamic monitoring. It operates with a typical current draw of 3.8 mA
and demonstrates stable performance across a broad temperature range (—40 °C to +85 °C). Furthermore,
it supports high-speed communication via the I?C interface, with data transfer rates up to 400 kHz. The
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MPU6050 remains a widely adopted motion-tracking sensor in applications demanding low power, low
cost, and high reliability, particularly in wearable and mobile systems.

e  Data Acquisition (DAQ) Unit: Although a separate DAQ system is not utilized, the data acquisition
process is handled internally by the sensors. The VL53L0X includes an integrated Time-of-Flight (ToF)
ranging engine that transmits processed distance data via I?C. Similarly, the MPU6050 features built-in
Analog to Digital Converter (ADC), digital low-pass filters, and a FIFO buffer, enabling direct digital
output. These embedded DAQ capabilities reduce hardware complexity and facilitate seamless data
transmission to the processing unit.

e  Processing Unit: The central processing core is led by an Arduino MEGA2560, which undertakes real-
time data fusion and algorithmic computations. This unit processes raw sensor data utilizing a Kalman
Filter for effective noise reduction, employs clustering techniques through the K-Means algorithm, and
implements fuzzy logic for informed decision-making support in maintenance contexts. The Arduino
MEGAZ2560 is characterized by extended memory and enhanced processing capabilities, rendering it
adept at managing multiple sensor inputs and complex algorithmic functions with minimal latency.

e  Output/Storage: Storage for data Secure Digital card (SD card) and a communication interface Universal
Serial Bus (USB) data transfer and potentially real-time monitoring.

Figure 1. Wiring Diagram of Sensor Integration

Figure 2 is illustrates the physical implementation of the railway geometry monitoring system mounted
on a custom-designed inspection trolley. The trolley is constructed for manual guidance along the rail,
facilitating reliable sensor attachment that ensures precision in data collection over irregular surfaces. The
system is developed based on mobility and terrain adaptability [33][34]. The trolley has a four-wheel design
with adjustable wheel spacing. Finite element analysis has been shown in previous studies [35] to be effective
in validating design rigidity and load-bearing capacity. While FEA was not performed in this study, its
relevance supports the structural reasoning behind the trolley’s rigid frame design. The sensors are installed in
a rigid frame, mounted on the trolley, and equipped with adjustable brackets for correct alignment and to
prevent vibrations [37]. Figure 3 shows the procedure for each sensor, such as laser distance measurement
sensors, IMU inclination sensor, and the actual arrangement of sensors on the inspection trolley. The
consideration of sensor integration is for precise and efficient data acquisition [38]. The DAQ and basic signal
processing functionalities are embedded within the sensors themselves. The VL53L0X infrared sensor
integrates a Time-of-Flight ranging engine and communicates via [2C, while the MPU6050 includes onboard
ADCs, low-pass filters, and a FIFO buffer for motion data acquisition. These sensors transmit raw data directly
to the Arduino MEGA2560 processing unit, which is enclosed in a protective cover mounted on the trolley to
shield it from environmental conditions, whereas the sensors remain exposed for unobstructed measurement.

To provide a clear overview of the data processing architecture and analytical framework employed in
this study, a methodological flowchart is presented in Figure 3. This diagram illustrates the sequential stages
starting from sensor installation and data acquisition, followed by Kalman-based noise filtering, unsupervised
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K-Means clustering for condition classification, and fuzzy logic-based decision support. The system then
outputs maintenance recommendations, stores the processed information, and undergoes a final performance
evaluation using standard metrics such as RMSE, MAE, F1-score, confusion matrix, and F-statistics [4]. This
flow ensures traceability, modularity, and clarity in the execution of each computational and hardware step.

Figure 2. Field-Deployed Railway Geometry Monitoring Trolley with Integrated Laser and IMU Sensors
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Figure 3. Methodological Flowchart
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2.2. Sensor Calibration
Figure 4 illustrates the instrumentation setup used for sensor calibration and measurement testing, where
a =985 mm and b = 70 mm denote the respective offsets used in width and height calculations. The system
comprises three primary sensor types: the VL53L0X laser infrared sensor for measuring both track gauge and
height, and the MPU6050 IMU for inclination measurement. Calibration procedures were conducted under
controlled conditions (20 & 2 °C and 45-55% Relative Humidity (RH)) to ensure consistency and traceability
[36]. Three types of sensors were employed in this study:
1. Track Gauge (Width) Sensor
Track gauge was measured using the VL53L0X time-of-flight laser-ranging sensor. The sensor was
calibrated using certified reference jigs with known distances. It was securely mounted on a rigid base to
minimize external vibration and ensure repeatability. The gauge calibration demonstrated high linearity
with a maximum absolute error of £0.05 mm and an R? value of 0.9998. The combined readings from the
left and right sensors were processed using a constant offset (a = 985 mm) to compute the total gauge
width (L).
2. Track Height Sensor
The same model of laser sensor VL53L0X was utilized for measuring track height. Calibration followed
a similar procedure, using a reference jig with known height differences. The resulting calibration curve

demonstrated a maximum relative error of +£0.06 mm and an R? value of 0.9997. This procedure ensured
consistent sensor performance under controlled environmental conditions. It is worth noting that
simulation methods are often used to validate the mechanical response of such systems, especially under
varying strain rates and springback conditions [40]. Data result of the height measurements from the left
and right sides, using the same sensors, are each summed with a constant b, resulting in the left-side
height L, and the right-side height L.

3. Inclination (Cross-Level/Cant) Sensor

Inclination was measured using the MPU6050 Inertial Measurement Unit (IMU), combining a 3-axis

accelerometer and a 3-axis gyroscope. Calibration was performed using a high-precision goniometer

following manufacturer guidelines. The IMU was rotated across known angle increments, and output data
were recorded to establish a calibration curve. Results indicated a maximum angular error of +£0.003°,
confirming the sensor’s high fidelity in detecting angular deviations.

The laser infrared sensors were calibrated, according to best practice, for the measurement of the track
geometry of the railway. This entailed precalibration preparation by firmly fixating the sensors and regulating
environmental conditions [41][42]. The first calibration procedures were focused on making controls with
reference objects (precision spheres) in such a way that they defined the reference measurements and that the
zeroing point of the sensor output was defined [43]. Linear and angle calibrations were carried out and dynamic
calibration was considered due to the movable nature of the platform [22],[44][45]. The infrared sensors were
calibrated using a flat reference surface at known distances between 50-200 mm. Measured values were
compared to ground truth to construct a linear fit curve (R? = 0.9997), with a maximum absolute error of £0.06
mm. The inclination sensor (MPU6050) was calibrated by aligning the device at known tilt angles and verifying
the resulting angle computation from accelerometer readings. Observed deviations were minimal, with
repeatable measurements within +1.5°. The calibration approach was designed to align with traceability
principles outlined in ISO 10360-10:2021 [5], which defines acceptance and verification procedures for laser-
based dimensional measurement systems. Similarly, the IMU/inclinometer calibration was guided by general
criteria from IEEE Standard 2700-2017 [6], which establishes performance metrics for MEMS-based inertial
sensors. Measurement uncertainty was estimated based on the conceptual framework presented in Refs
[46][47], considering key environmental and instrumental factors relevant to low-cost infrared sensing systems.
Potential error sources and drift, as calibration, environmental conditions, optical path change, vibrations, and
signal noise are recognised and counteracted with regular calibration, environmental control, novel sensor
housing, vibration isolation, advanced signal treatment and feedback mechanisms [43][49]. Field validation
was implemented according to best practice guidelines, including stable sensor mounting, ground-truth-based
calibration under controlled environmental conditions, use of filtering techniques to reduce noise, and field-
level testing with integrated multisensor data logging. While full industrial protocols were not adopted, the
system design and validation methodology were aligned with core principles of traceable and repeatable sensor
deployment [103],[50].
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| d |

Figure 1. Sensor Measurement Test Equipment, a= 985 mm, b= 70 mm

2.3. Data Acquisition (DAQ) and Hardware Implementation

The DAQ system used in this work is managed using the internal capabilities of each sensor module,
enabling lightweight integration and power efficiency suited for embedded platforms such as laser-based
distance sensors and IMU MPU6050. The sensor fusion comprises a laser-based distance sensor (VL53L0X)
and an Inertial Measurement Unit (IMU, MPU6050). Each sensor includes an internal data acquisition pipeline
and communicates via I?C to the microcontroller.

2.3.1. Internal DAQ and Sampling Rate of VLS3L0X

The VL53L0X is a time-of-flight (ToF) laser distance sensor capable of absolute distance measurements
up to 2 meters. Its internal DAQ pipeline includes a Vertical-Cavity Surface-Emitting Laser (VCSEL) emitter,
Single Photon Avalanche Diode (SPAD) photon detector array, and a ToF ranging engine, which performs
signal acquisition and processing to calculate distance values. Although the VL53L0X sensors support high-
frequency acquisition (up to 50 Hz and 500 Hz respectively), a fixed sampling interval of 0.5 seconds (2 Hz)
was selected in this study. This data acquisition rate was determined empirically based on the trolley’s traversal
speed, which followed an average human walking pace (~0.5—1 m/s), and the spatial resolution required for
structural profiling. Manual reference measurements were taken every 0.5 meters along a 10-meter linear path
to validate the system’s sensor outputs. Additionally, slower sampling helped suppress high-frequency
measurement noise, avoid sensor over-triggering due to mechanical vibration, and simplify data processing on
the embedded microcontroller [7]. This decision balances spatial resolution, noise control, and system
responsiveness, making it suitable for real-time low-cost railway monitoring [8].

2.3.2. Integrated IMU DAQ Pipeline of MPU6050

The MPU6050 integrates a 3-axis accelerometer and 3-axis gyroscope, with internal 16-bit ADCs, low-
pass filtering, and an optional Digital Motion Processor (DMP). The device supports configurable output rates
from 10 Hz up to 500 Hz, and includes a 1024-byte FIFO buffer for burst-mode acquisition. For this study, a
sampling rate of 2 Hz was selected as a balance between resolution and processing load [9]. This enables
detection of rotational and lateral dynamics relevant to rail inclination and cross-level deviation at high spatial
fidelity [8].

2.3.3. System Integration and Synchronization

Both sensors interface via 12C protocol to the Arduino Mega2560 [10]. A timestamp-based software
synchronization scheme was used to align IMU and laser readings during acquisition cycles [11]. This design
avoids reliance on external DAQ systems and allows real-time fusion and onboard processing (e.g., Kalman
filtering) without significant latency. The system requires approximately 290 milliseconds to process and log
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each sensor fusion cycle such as KF, Clustering, and Fuzzy Inference. Power is supplied via a 5V battery
module with regulated output to the sensor array. Data is stored to an SD card and transmitted via USB for
offline analysis. The entire system is mounted on a custom-built aluminum trolley with adjustable sensor
brackets and vibration-damped suspension to reduce motion artifacts during traversal.

2.4. Data Processing Algorithms
2.4.1. Kalman Filter Implementation and Justifications

A Kalman Filter (KF) was developed to combine the data of the laser sensors and the IMU in order to get
a better and more reliable estimate of the track geometry parameters. KF is a recursive algorithm used to
estimate the state of a dynamic system based on a sequence of noisy measurements. Both the process and
measurement models of the KF were established according to the discrete-time linear stochastic system
formulation. The process model assumes slow dynamics in the physical states being monitored, consistent with
the selected 0.5-second (2 Hz) sampling interval, which reflects the slow movement of the trolley and spatial
resolution of the track geometry assessment [66]. The state vector comprises the track gauge, height and cross-
level and their corresponding rates of change. The Q and R matrices were estimated and optimised for the
process noise covariance and the measurement noise covariance using a mix of model-based estimation,
adaptive methods, statistical methods and residual analysis [57][58]. The noise covariance matrices were also
cross-validated and adjusted with field calibration and simulation [60][61]. The process noise covariance
matrix Q was modeled as a scaled identity matrix below.

Q=0 x|, withof =1x1073

This reflects the assumption of low but non-zero uncertainty in the system's dynamics. However, in
practice, Q was empirically adjusted to Q=1.0 during system-level testing on the Arduino Mega2560 to
improve estimation responsiveness in dynamic rail conditions. The measurement noise covariance matrix R
was computed based on empirical data obtained from repeated static measurements. Variance values were
observed to be in the range of 59 mm? for the VL53L0X distance sensors and approximately (2°)? for the
MPU6050 inclination sensor. These values were used to define sensor-specific R values in the implemented
system: Rty = 6; Rt = 9; Ryy = 5; R, = 7 and R, = 2. Filter python library was used to perform KF in
Python. Best practices in terms of KF implementation were adopted, including selection of the filter given the
nonlinear nature of the IMU measurements with respect to the track cross-level, careful sensor fusion,
calibration and initialization, noise characterization and management, tuning of the algorithm, efficient data
processing and testing and validation in the final environment [56]. KF drawbacks and limitations such as
model errors, nonlinearity, the characteristics of measurement noise, time synchronization, computational
burden and data association challenges were mitigated by appropriate strategies [63].

2.4.2. K-Means Clustering and Justifications

The track geometry data was classified into condition categories (e.g., ‘good’, ‘fair’, or ‘poor’) using K-
Means clustering. K-Means is an unsupervised learning algorithm that groups data points into K clusters such
that each data point belongs to the cluster with the nearest centroid [12]. The algorithm was written in Python
with the scikit-learn library. The Aggregated Statistical Descriptor (ASD) as input features for the K-Means
algorithm were the filtered track geometry (gauge, height, and cross-level) parameters from the output of the
KF. The features were normalized to allow each feature to contribute equally to the distance calculation [66],
[67]. Feature selection was performed for determination of relevant features and also to reduce the
dimensionality applied one by selecting relevant features, followed by Principal Component Analysis (PCA)
[66],[68]. The number of clusters (K = 2) was selected to correspond to a binary classification of track segments
into “good” and “poor” categories, as informed by domain expertise. To validate this selection and assess
clustering robustness, internal validation metrics were employed. The Elbow Method revealed a distinct
inflection point at K = 2, while the Silhouette Score peaked at approximately 0.51, indicating high intra-cluster
cohesion and inter-cluster separation [13]. These results supported K = 2 as the statistically optimal
configuration for the given dataset.

The Elbow Method result based on the Within-Cluster Sum of Squares (WCSS), showing a clear
inflection point at K = 2 and the Silhouette Score across different values of K, with the highest score recorded
at K =2, indicating optimal cluster separation. These results underscore the model’s parsimony while retaining
high discriminative capability. The final values and corresponding validation plots will be updated upon
completion of full-dataset post-processing. Outlier handling was approached indirectly via the prior Kalman
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filtering stage, which reduced transient noise and suppressed measurement spikes in the gauge, height, and
inclination parameters [14]. Although statistical outlier removal (e.g., Z-score or IQR) was not explicitly
applied, the filtered dataset showed no extreme deviations that could compromise clustering integrity.
Additionally, Euclidean distance was selected for distance calculation in K-Means, and clustering robustness
was confirmed using internal validation metrics (Silhouette Score and Elbow Method), which further mitigated
outlier sensitivity. To evaluate clustering performance, both the Within-Cluster Sum of Squares (WCSS) and
Silhouette Score metrics were computed for a range of cluster numbers (K = 2 to 9) using Python. The Elbow
Method was applied to the WCSS plot to determine the optimal K, while the Silhouette Score quantified the
compactness and separation of clusters. Results indicated that K = 2 yielded a distinct inflection point in the
Elbow curve and the highest Silhouette Score (= 0.51), supporting a binary classification. The full Python code
and clustering validation plots are provided in Supplementary Material 9.

Figure 5 Validation of optimal cluster number in K-Means algorithm: (a) Elbow plot showing WCSS for
different K values; (b) Silhouette Score indicating the clustering cohesion and separation across K. Both metrics
support K = 2 as the optimal clustering configuration. Both validation metrics confirmed the appropriateness
of K =2. As shown in Figure 5, subfigure (a) illustrates the Elbow curve of WCSS for K ranging from 2 to 9,
revealing a distinct “elbow” at K = 2. Subfigure (b) displays the average Silhouette Score, which peaked at K
=2 (& 0.51), indicating high intra-cluster cohesion and inter-cluster separation. These results statistically
validate the binary classification of track conditions. K-means++ was used for cluster initialization to enhance
solution. Nevertheless, other methods for determining K, like the Elbow Method, Silhouette Score, Gap
Statistic and cross-validation based techniques were also investigated to explore the stability of the clustering
results [69][70]. Proper distance measures such as Euclidean distance and Manhattan distance were considered,
and Euclidean distance was chosen according to the statistical property and validation result [71][72]. The
drawbacks of K-Means clustering—imposed number of clusters, sensitivity to the presence of outliers, circular
cluster assumptions, and distance metric limitations; convergence at a local rather than global minima—were
ameliorated with the recommended resolutions [39],[73]. To further validate the choice of cluster number, a
comparative analysis between K = 2 and K = 3 was conducted. When K was increased to 3, the average
Silhouette Score decreased from approximately 0.51 to 0.44, and the WCSS dropped only marginally from
361.2 to 234.1. This indicates that while the additional cluster introduced a finer segmentation, it did not yield
a significant improvement in cohesion or separation. Therefore, K = 2 remains the statistically optimal and
computationally efficient choice for binary classification of track conditions. These results underscore the
model’s parsimony while retaining high discriminative capability. The final values and corresponding
validation plots will be updated upon completion of full-dataset post-processing.

Elbow Method: WCSS vs Number of Clusters Silhouette Score vs Number of Clusters
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Figure 5. Clustering Validation using (a) Elbow Method showing WCSS and (b) Silhouette Score

2.5. Fuzzy Logic Output and Decision Support

The output from the Kalman Filter, which provides denoised and smoothed estimates of track geometry
(gauge, height, and inclination), is used as the input feature set for the K-Means clustering algorithm. This
clustering step categorizes each data point into predefined track condition classes (e.g., “good” or “poor”). The
results of this unsupervised classification are then used as inputs to the fuzzy logic system, where track
segments are evaluated using linguistic rules that consider combinations of gauge, height, and inclination
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severity. The fuzzy logic output generates a final maintenance decision, such as “No Action,” “Monitor,” or
“Urgent Maintenance.” This sequential framework allows raw, noisy sensor data to be progressively refined,
classified, and interpreted in a human-readable format suitable for real-time field application.

The outputs of the fuzzy logic systems and how it uses the clustered data to produce the maintenance
recommendations are detailed in this section. A table of the fuzzy rule and its output is also maintained. The
inputs of the fuzzy logic system are the clustered data with the mean values of track gauge, height, and
inclination over the trolley traversal window. Triangular membership functions were selected due to their
simplicity, computational efficiency, and ease of implementation on embedded platforms such as the Arduino
Mega2560 [15]. These shapes offer interpretable boundaries between fuzzy states and are commonly used in
real-time decision systems where processing resources are limited [16]. The breakpoints of each function (i.e.,
the crossover thresholds between "Low," "Medium," and "High") were defined based on domain-specific
thresholds in track geometry standards, verified through expert consultation and calibration data [17]. Visual
examples of membership functions are shown. The three defined functions read "Low," "Medium," and "High."
The rule base is the list of [F-THEN rules which map combinations of input fuzzy sets to the output fuzzy set
associated with maintenance action for the systems (e.g., "No Action," "Monitor," "Urgent Maintenance"). An
example from the fuzzy rules is shown in Table 2 [88]-[90].

Table 2. Sample Fuzzy Rules
Rule If Gauge If Height IfInclination THEN maintenance action

1 Low Low Low No action

2 Medium Medium Medium Monitor

3 High High High Urgent maintenance
4 Low Medium Low Monitor

5 Medium High High Urgent maintenance
6 Low High Low Monitor

The fuzzy logic system was implemented manually on the Arduino platform based on a rule-based
classification of the sensor outputs (gauge, height, and inclination) [16]. Each parameter was evaluated against
its standard range, and a condition flag was assigned if it fell outside the expected bounds. The number of non-
standard parameters determined the severity of maintenance needed, with corresponding weight values of 0.5
(minor issue), 0.75 (moderate issue), and 1.0 (critical condition). Although not implemented using a fuzzy
inference engine, the decision process follows fuzzy logic principles by translating continuous sensor values
into linguistic categories and assigning partial weights to each condition [17]. The overall decision is
determined by aggregating the condition flags and computing a weight-based recommendation. Fuzzy rules
base are outlined as follows:

e  If | parameter is non-standard — Maintenance weight = 0.5 (No action)
e  If2 parameters are non-standard — Maintenance weight = 0.75 (Monitor)
e  [f>3 parameters are non-standard — Maintenance weight = 1.0 (Urgent maintenance)

The defuzzification is performed via threshold-based categorization of the total non-standard count,
which translates into discrete maintenance actions displayed in real-time on the Liquid Crystal Display (LCD)
and logged in the SD card. This lightweight, embedded implementation allows real-time decision support
without requiring complex fuzzy inference libraries, yet retaining the interpretability and gradation typical of
fuzzy logic systems. A list of fuzzy rules used in the decision support system is summarized in Table 4. Every
rule correlates a joint fuzzy set of inputs (Gage, Height, Inclination) to one fuzzy set of output (Action
Maintenance). Heuristic methods have proved powerful to control classification models even in the presence
of uncertain parameter estimates for robust decision-making [91]. The decision systems such as fuzzy logic
along with weighting or ranking method such as Simple Additive Weighting (SAW), have also been
incorporated with decision making and mechanical optimization [92]. A fuzzy inference engine performs the
input response via the rule base with a method of defuzzification (e.g., centroid method) of the fuzzy answer
into a numerical maintenance recommendation. The process of weighted average method that operates the
decision-making system is shown in Figure 7. This suggestion, along with the level of confidence, is then
offered to the user. Visualising results such as surface plots can demonstrate how the outputs change with
respect to two inputs [94]. The source code (Arduino + Python) and experimental datasets used in this study
are provided as supplementary material to support reproducibility and independent verification.

3. RESULT AND DISCUSSION
This section outlines the results of data analysis using KF, K-Means clustering, and fuzzy logic to support
railway track maintenance decisions. Each method is assessed for its accuracy and effectiveness, with results
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interpreted in the context of infrastructure reliability. Comparative insights with prior research highlight the
advantages and limitations of sensor-based monitoring, demonstrating its potential to enhance decision-making
through a more proactive and data-driven maintenance approach.

3.1. Sensor Data Processing and Cluster-Based Pattern Recognition

Examples of raw data for measurements of railway track geometry with laser infrared sensors, with and
without the KF application, are shown in this section. The role of the KF in noise removal is illustrated in graph
form and evaluated using Signal-to-Noise Ratio (SNR) and other error measures. The SNR was calculated
using Python to evaluate the effectiveness of Kalman filtering in enhancing signal quality. The Python code is
in Supplementary Material 4, as follows the formula used is:

Var(xmanual) )

Var(x

SNR;; = 10 X logw(

Xsensor)

manual

Where x .-, is the reference measurement (manual data), and x is the KF output. This formulation

sensor
quantifies how much the filter reduces noise relative to the signal. The resulting SNR values were (Table 3):

Table 3. SNR Value Each Measurements
Measurements SNR (dB)

Width (L) 21.7
Left Height (T1) 1.8
Right Height (T2) 0.5
Inclination (A) 2.1

The computed SNR values, confirm shown in Table 3 that the Kalman Filter significantly enhances signal
quality, particularly for width measurements, which achieved an SNR of 21.7 dB, indicating strong noise
suppression and high signal integrity [18]. In contrast, lower SNRs for height and inclination measurements
(0.5 dB to 2.1 dB) reflect the greater susceptibility of these channels to field noise, such as mechanical vibration
and sensor alignment sensitivity [19]. Nevertheless, the filtering process effectively preserved underlying
geometry trends across all parameters [20]. Importantly, these filtered signals remained sufficiently robust to
support consistent clustering and fuzzy logic-based decision-making, underscoring the system’s resilience
under real-world conditions [21]. Figure 6 illustrates the visual improvement post-filtering. Figure 6
comparison of raw (dark lines) and Kalman-filtered (lighter lines) data for both width (A) and height (B)
measurements, illustrating substantial noise reduction by filtering. The raw data (the black line) fluctuates a
great deal as a result of the various noises, among which the phase noise, amplitude noise, speckle noise,
environmental noise, electronic noise and mechanical vibrations can be found [75]-[77]. The Kalman-filtered
track 30 pattern (plotted in red) reduces the number of details, reflecting a smoother change in the track
geometry [78]. The noise sources are efficiently suppressed by the KF, and the underlying signal trends are
preserved [62]. In order to compare accuracy, Figure 7. compares sensor system measurements with manual
width, height, and angle references.

Figure 7 compares the sensor-based measurements (after filtering and rounding) with manual
measurements for four parameters: width (L vs. Lm), left height (T1 vs. T1m), right height (T2 vs. T2m), and
inclination (A vs. Am), sampled at approximately 50 cm intervals. The sensor readings were calibrated to
match the geometry of the rail track, including the fixed distance between sensors for width (985 mm) and the
offset from the rail surface (70 mm) for height. As shown in Figure 6(a), the track width measured by the sensor
closely aligns with the manual reference, with a maximum deviation of 2 mm, remaining within standard
tolerances. Figure. 6(b) and Figure 6(c) demonstrate left and right height comparisons, with the largest
difference observed at 700 cm in T1, amounting to 3 mm, still acceptable for maintenance decision-making.
Figure 6(d) shows that the inclination angle measured by the sensor exhibits minimal fluctuation and mostly
aligns with the manual readings, indicating stable track alignment [22]. These minor variations suggest that the
sensor system can reliably approximate manual measurements, offering practical usability for track condition
assessment without significant measurement error.
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Figure 6. Comparison of left width (L1 F) and right width (L2 F) with and without filter (11 and 12), as well as left height
(T1 F) and right height (T2 F) with and without filter (t1 and t2) and data rounded plus filter of left width (L1), and right
width (L2), left height (T1) and right height(T2), angle rounded plus filter (A), and angle with filter (A F). (a) shows the
left width, (b) shows the right width, (c) shows the left height, and (d) shows the right height, (e) shows the raw
measurement data from the sensor throughout the trip, including multiple parameters such as width, height, and angle
both with and without filter
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Figure 7. Comparison of sensor-based and manual measurements, including width (L vs. Lm), left height (T1 vs. T1m),
right height (T2 vs. T2m), and angle (A vs. Am). (a) shows the comparison of width (L and Lm), (b) shows the
comparison of left height (T1 and T1m), (c) shows the comparison of right height (T2 and T2m), and (d) shows the
comparison of angle (A and Am)

3.2. Validation and Performance Evaluation
To evaluate the effectiveness of the sensor fusion approach, Kalman Filtering was applied to the raw

measurements. The resulting gains show a dramatic reduction of the measurement error, and improved data
precision after employing the KF [79][80]. Quantitatively evaluate the effectiveness of the Kalman filtering,
the RMSE and MAE were computed by comparing filtered sensor outputs with corresponding manual
reference measurements [21]. Given the difference in physical units between the laser-based distance sensors
(millimeters) and the IMU-based inclination sensor (degrees), the aggregated error metrics were calculated
exclusively from the laser-derived measurements (i.e., width and height) [20]. This ensures consistency in
dimensional analysis and preserves the interpretability of the aggregated results. The RMSE and the MAE by

the following equations:

n

1 ~
MAE =~ |y, - 3
n

i=1

RMSE =
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Where the y; is a manual value, J; is a sensor value, and n is the number of samples. The results showed a
significant reduction in error across all measured dimensions that utilized python code to calculate the RMSE
and MAE for each measurement and the calculations were performed using a Python script provided in
Supplementary Material 5, as shown in Table 4. RMSE and MAE for Each Measurement.

Table 4. RMSE and MAE for Individual and Aggregate Track Geometry Measurements

Measurements RMSE MAE
L 0.3086 mm  0.0952 mm
T1 1.1127 mm  0.5714 mm
T2 0.8165 mm  0.2857 mm
A 0.3086° 0.0952°

Laser Sensor 0.8165mm  0.3175 mm

Table 4 shows certain parameters (e.g., L and A) yielded identical RMSE and MAE values. This outcome
is not a computational error, but rather a result of equivalent statistical differences observed between the
respective manual and sensor-derived values during error computation. The similarity in error metrics across
these parameters reflects the nature of the dataset used, where the filtered outputs for L and A happened to
align with the manual references to the same degree of precision. Therefore, the identical values are a valid
result of the applied evaluation method using Python-based RMSE and MAE calculations.

The “Laser Sensor” value represents the arithmetic mean of the individual errors from the laser-based
parameters (L, T1, and T2). Inclination (A) was excluded from the aggregation due to its differing unit of
measurement (degrees), which would compromise dimensional homogeneity. This provides an overall
summary of system performance by aggregating error or classification results equally across all measurement
channels. These values demonstrate the accuracy of the filtered data in approximating the real-world ground
truth, thus supporting the validity of the KF application in this system [18]. This evaluation also fulfills
statistical validation expectations as requested.

In examining the unfiltered sensor waveforms, noise patterns were empirically classified into dominant
sources based on their frequency content and operational behavior. It was observed that mechanical vibrations
resulting from trolley motion and track roughness contributed the largest portion of signal disturbance
(estimated ~40-50%), as evidenced by high-frequency jitter in raw sensor signals [23]. Infrared laser
measurements were also affected by ambient light and surface reflectivity, contributing an estimated 25-30%
to signal variability [24]. Electronic interference from the power supply and ADC conversion introduced about
10-15% of residual fluctuation, while minor drift (5-10%) was attributed to changing environmental factors
such as temperature or humidity. These estimations, though approximate, align with known sensor sensitivities
and were used to inform the tuning of the Kalman Filter parameters for optimal suppression of dominant noise
sources.

Once the sensor data were preprocessed using Kalman filtering, the cleaned measurements were used for
pattern classification using K-Means clustering. This enabled the grouping of similar track conditions for
further decision support [25]. This section presents the results of K-Means clustering applied to preprocessed
railway track geometry data. As validated in Section 2.4.2 (Figure 5), the optimal number of clusters was
determined to be K = 2 using both the Elbow Method and Silhouette Score (0.57), indicating a distinct
separation in the dataset. Figure 5 (added in this section) visualizes the clustering results as a scatter plot of
gauge vs. height, with each point color-coded based on cluster assignment. The cluster centroid values are
summarized in Table 5. Cluster 1 reflects nominal track geometry conditions, while Cluster 2 indicates
anomalies in height and inclination, potentially requiring maintenance intervention. These clusters were used
as inputs to the fuzzy decision system.

Table 5. Cluster Centroids Based on Width (mm), Height (mm), and Inclination (°)
Cluster  Gauge (mm) Mean Height (mm) Mean Inclination (°)
1 (n=16) 1061.06 0.69 0.13
2(n=4) 1065.50 2.75 0.75

Table 5 presents the centroid values for each K-Means cluster across the four filtered parameters. Cluster
1 represents nominal track geometry conditions, while Cluster 2 exhibits deviations in height and inclination,
suggesting increased maintenance needs [26]. This compliance affirms the cluster as indicative of “base
geometry” suitable for normal operational conditions and requiring no maintenance intervention. The K-Means
clusters derived in Section 2.4.2 serve as a structural validation of the data distribution, but the fuzzy logic
system remains the primary decision engine. In practice, Cluster 1, which reflects nominal geometry, typically
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aligns with the “No Action” category, while Cluster 2, showing elevated height and inclination, aligns with
“Monitor” or “Urgent Maintenance” depending on the combination of out-of-range parameters. This mapping
reinforces the interpretability of clustering in supporting rule-based decision-making. These clustering results
help the fuzzy logic system classify track segments into conditions such as “No Action” or “Monitor.” The
clear separation between Cluster 1 and Cluster 2 supports the system’s ability to provide actionable
maintenance recommendations. These various clusters may reflect the diversity of track states, which demand
different levels of attention to maintenance [64]. The Elbow methods and Silhouette scores are employed to
validate (K) numbers, indicating there is a trade-off between the number of clusters and the explained variance
[65]. As discussed in Section 2.4.2, attempts to increase cluster granularity to K = 3 resulted in reduced
Silhouette performance and minimal WCSS gain, further justifying the binary segmentation used in this study.

3.2.1. Confusion Matrix and Bootstrap

This section verifies the proposed system by comparing sensor-based measurements with manual
measurements. A confusion matrix and some important metrics with their confidence intervals are displayed.
The confusion matrix of the system classification performance is shown in Table 6. Columns are a fuzzy logic-
based sensor system that produced predictions about the track condition and rows are the true track condition
(provided by hand measurements). Where TN is the True Negative, the system correctly predicted “No Action”
for a track segment that was actually in good condition. TP is the True Positive, the system correctly predicted
the actual condition (e.g., “Monitor” or “Urgent Maintenance™). FN is the False Negative, the system failed to
detect a degraded track condition. FP is the False Positive, the system falsely predicted a degraded condition
where the track was actually normal.

Table 6. Confusion Matrix
Predicted No Action  Predicted Monitor  Predicted Urgent Maintenance

Actual No Action 12 (TN) 2 (FN) 1 (FN)
Actual Monitor 0 (FP) 20 (TP) 1 (FN)
Actual Urgent Maintenance 0 (FP) 1 (FP) 18 (TP)

Performance of the system was computed by applying a confusion matrix using standard classification
metrics, as defined by the following formulas. The calculations were performed using a Python script provided
in Supplementary Material 6.

e  Accuracy

(TP +TN)
(TP + TN + FP + FN)

Accuracy =

e  Precision (PPV)

PPV = (TP)
(TP + FP)
e  Sensitivity (Recall)
Sensitivity = — . F)
ensitivity = TP+ FN)
e  Specificity
Specificity = (TN)
pecificity = TN T FP)

° F1 Score

(2 X PPV x Sensitivity)

F1S8 =
core (PPV + Sensitivity)

Where, Accuracy is the percentage of correctly classified instances of railway track condition based on
width, height, and inclination measurements compared to manual labeling. Precision is the ratio of the number
of identified positive maintenance cases (e.g., “monitor” or “urgent”) to all cases predicted as requiring
maintenance by the fuzzy logic system. Sensitivity (Recall) is the proportion of actual maintenance-needing
segments (based on manual measurements) that were successfully identified by the sensor-based system.
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Specificity is the ratio of segments that truly required no maintenance (based on manual data) and were also
correctly predicted as “no action” by the system. F1-Score is the weighted average of precision and recall,
representing a balanced measure of the system’s ability to identify both true maintenance needs and avoid false
alarms. F-Test is the the significant difference of the variance between the sensor and manual results. RMSE
(Root Mean Square Error): The square root from the mean of the squared differences between predicted and
actual values. MAE (Mean Absolute Error) is the average of magnitude of the errors can be seen in Table 7.

Table 7. Confusion Matrix Score for Each Measurements

Measurement Accuracy  Precision Sensitivity  Specificity F1-Score
L 0.94 0.95 0.94 0.97 0.94
T1 0.85 0.87 0.84 0.92 0.85
T2 0.90 0.92 0.90 0.95 0.90
A 0.94 0.95 0.94 0.97 0.94
Whole Measurements 0.91 0.92 0.90 0.95 0.91

The values presented in Table 8 (Accuracy, Precision, Sensitivity, Specificity, F1-Score, RMSE, and
MAE) were obtained by aggregating classification results across all measurement categories: L, T1, T2, and
A. Each data point was assigned a classification label (“No Action”, “Monitor”, or “Urgent Maintenance”)
based on its deviation from standard thresholds. These labels were compared with the corresponding
classifications derived from manual measurements. This aggregation approach provides a holistic evaluation
of the system performance rather than an individual assessment per measurement dimension. The 95%
confidence intervals were computed using bootstrap resampling for error-based metrics (RMSE, MAE) and
Wilson Score Interval for classification metrics (Accuracy, Precision, Sensitivity, Specificity, F1-Score). Table
8 presents these performance values, along with their 95% confidence intervals (computed as bootstrap
confidence intervals for RMSE and MAE, and as a Wilson Score interval for accuracy and precision).

Detailed Python scripts used for F-Statistic is in Supplementary Material 7. To assess the statistical
agreement between sensor-based and manual measurements, an F-test was conducted for each geometry
parameter to determine whether the variances between the two measurement methods differ significantly. The
null hypothesis assumed equal variances, and the significance threshold was set at @ = 0.05. The resulting F-
statistics and p-values are provided in Table 6. since the p-values are exactly equal to the critical threshold
(p = 0.05), the variance difference is interpreted as marginally significant, suggesting that while there may
be slight variance differences, they are not statistically strong enough to reject the null hypothesis with high
confidence. These results underscore the system’s capability to yield stable and precise outputs, making it
suitable for field deployment in real-time track geometry inspection. Notably, RMSE and MAE values fall well
within EN 13848-1 safety tolerances for Class 1 and Class 2 railways (e.g., gauge variation £3 mm, inclination
within £0.5°), further validating the system’s reliability. Moreover, Figure 7 demonstrates a strong correlation
between sensor and manual measurements using a scatter plot with a line of equality. The data points closely
follow the reference line, indicating minimal deviation and good correspondence across all measurement
parameters [48]. This visual and statistical agreement reinforces the effectiveness of the proposed Kalman-
filtered sensor system in providing accurate, reproducible railway track geometry assessments. Differences
between sensor-based and manual estimates are explored, and possible sources of error (e.g., sensor calibration,
environmental variables) are addressed [96].

Table 8. Performance Metrics and Confidence Intervals

Metric Value 95% Confidence Interval
Accuracy 0.91 [0.81, 0.96]
Precision 0.92 [0.85, 0.97]
Sensitivity 0.90 [0.74, 0.93]
Specificity 0.95 [0.86, 1.00]
F1-Score 091 [0.84, 0.96]

F-Statistics L F=1.12 p=0.05
F-Statistics T1 F=0.33 p=0.05
F-Statistics T2 F=0.59 p=0.05
F-Statistics A F=0.86 p=0.05
RMSE Width and Height 0.816 [0.62, 0.85]
MAE Width and Height 0.317 [0.28, 0.45]
RMSE Inclination 0.308 [0.62, 0.85]
MAE Inclination 0.095 [0.28, 0.45]
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3.3. Interpretation of Result

According to EN 13848-1, acceptable limits for track geometry deviation (e.g., gauge variation <43 mm,
height difference < +5 mm) are met by the sensor-based measurements [26]. The achieved RMSE and MAE
values in this study fall within or near these standards, supporting the system’s applicability in operational
settings. The findings confirm that sensor-based monitoring significantly improves railway maintenance by
enabling real-time, high-precision detection of track geometry deviations. The use of laser sensors and IMUs,
combined with KF and clustering algorithms, allows for reliable classification of track conditions and proactive
scheduling of maintenance. By leveraging indicators such as RMSE, MAE, and sensitivity, the system supports
condition-based decision-making rather than time-based interventions [27]. The approach also benefits from
predictive capabilities using historical data and machine learning to anticipate degradation. Visualization tools,
risk indices, and rule-based logic further enhance the practical utility of the system in prioritizing interventions
with minimal operational disruption.

To evaluate the robustness of the fuzzy decision system, a sensitivity analysis was conducted by applying
a =1 mm perturbation to the input features (L, T1, T2) and observing changes in the resulting maintenance
category. The results indicated that in over 85% of the cases, the output maintenance recommendation (i.e.,
“No Action”, “Monitor”, or “Urgent Maintenance”) remained unchanged. In the remaining cases, the
recommendation shifted by only one level (e.g., from “Monitor” to “Urgent Maintenance”), and no instances
were observed where small perturbations led to drastic category changes. This confirms that the fuzzy logic
system is resilient to minor fluctuations, ensuring stable decision-making even under low-level sensor noise or
measurement uncertainty. Such stability is essential for real-time embedded railway applications [15], where
sensor variance may occur due to vibrations, calibration drift, or environmental noise.

3.4. Comparison with Previous Work

Compared to traditional laser-based systems, the proposed sensor-integrated solution offers competitive
performance with improved flexibility and cost-effectiveness. While laser technologies provide high spatial
accuracy and low RMSE, they often require direct line-of-sight and are cost-intensive for large-scale
deployment. In contrast, sensor-based systems incorporating inertial sensors, GPS, and Al algorithms offer
broader coverage, continuous monitoring, and predictive insights [28]. Although slightly lower in precision,
the integration of sensor fusion and clustering enables reliable detection of anomalies, making the system
suitable for both routine and emergency inspections.

In terms of cost and operational efficiency, the proposed sensor-integrated system is highly economical,
with a total hardware cost of less than USD 61.4 (under IDR 1 million). This low cost implementation requires
only 1-2 operators to perform measurements and data acquisition. In contrast, traditional manual inspection
methods involve multiple separate tools such as rail head profilometers, mechanical width gauges, string-based
inclination measures, and physical maintenance logbooks and typically demand 3—4 workers per operation
depending on the inspection distance. These manual procedures are labor-intensive, time-consuming, and prone
to human error, especially over long distances [29]. In comparison, the proposed system enables an estimated
65—75% reduction in operational cost per inspection round, primarily due to reduced manpower and elimination
of analog equipment. This figure is derived from typical labor rates and inspection durations across surveyed
sites. Therefore, the proposed system presents a more scalable and effective alternative, offering higher
consistency, reduced manpower, and digital recording capabilities at a significantly lower cost. Compared to
traditional inspection workflows, the system is projected to reduce maintenance inspection costs by over 65%,
offering both economic and operational advantages.

3.5. Implications and Limitations

The adoption of intelligent sensor-based monitoring supports a shift toward proactive, data-driven
maintenance strategies in the railway sector . Enhanced accuracy, automation, and coverage reduce failure
risks, optimize resource allocation, and extend infrastructure life cycles. However, limitations remain,
including the need for rigorous sensor calibration, data validation, and skilled personnel for system operation
and interpretation. Initial deployment costs and lack of standardization may also hinder widespread adoption.
Future development should focus on interoperability, digital twin integration, and regulatory frameworks to
fully realize the benefits of sensor-based railway infrastructure monitoring. The results demonstrate that the
proposed system can detect deviations in gauge and inclination within +3 mm and +0.3°, respectively. These
values fall within the acceptable range set by EN 13848-1 for Class 1-2 tracks, supporting the system’s
applicability for reliable geometry monitoring. Dimensional accuracy, the VL53L0X laser sensor was
calibrated in compliance with ISO 10360-10, ensuring traceability and sub-millimeter precision in linear
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distance measurements. Similarly, the inertial measurements from the MPU6050 comply with the performance
standards outlined in IEEE Std 2700-2017, providing consistent angular resolution [5][6].

and low-latency updates. Together, these standard-compliant sensors enhance reliability in track
evaluation. In practice, maintaining RMSE < 1 mm and MAE < 0.4 mm allows for earlier detection of
geometric irregularities, reducing derailment risks and enabling cost-effective, preventive maintenance.
Compared to commercial LIDAR-based railway geometry systems, which typically exhibit width and height
RMSE values of 1.0—1.5 mm and 1.5-2.0 mm respectively, the proposed system achieved an RMSE of < 1 mm
(width) and =0.7 mm (height), reflecting a 25-50% improvement in accuracy [28]. Similarly, inclination
estimation achieved RMSE of = 0.3°, outperforming many laser-based systems that report cross-level RMSEs
exceeding 0.5°. These results demonstrate the system's competitive performance despite significantly lower
hardware cost. Furthermore, sensor inaccuracies may also arise from manufacturer-level variations, as
observed during individual sensor calibration. Although identical sensor units (infrared time-of-flight sensors)
from the same production batch were used, slight discrepancies were detected in their raw output. For example,
one sensor consistently reported a distance range between 16.2 to 16.8 cm for a calibrated ground-truth of 16.0
cm when sampling at 20 ms intervals. With a slower sampling rate (1 second), the readings stabilized around
16.8 cm. Each sensor required individual calibration due to such intrinsic deviations. This variation is attributed
to minor differences in internal circuitry or emitter-receiver alignment during fabrication. These discrepancies
were compensated through empirical offset correction and validated against manual measurements, ensuring
consistent measurement accuracy across all sensors.

Future versions of the system could incorporate automatic self-calibration routines and IoT-based remote
data transmission to reduce dependency on manual intervention and improve scalability. These advancements
would not only simplify system deployment across larger networks but also enhance worker safety by
minimizing the need for field personnel to operate directly on active tracks. Moreover, real-time data
accessibility via IoT could support improved train scheduling and predictive maintenance strategies, allowing
railway operators to detect geometry deviations earlier and prevent service disruptions. While this study
employed traditional scatter plots to interpret clustering patterns, future work can incorporate advanced
visualization techniques to explore high-dimensional sensor data better. Methods such as box plots can reveal
distribution spread and outliers across clusters, parallel coordinate plots can highlight multivariate
relationships, heatmaps can illustrate inter-parameter correlations, and 3D scatter plots can support multi-axis
interpretation. Additionally, t-distributed stochastic neighbor embedding (t-SNE) may provide a more nuanced
understanding of local clustering behavior. These tools can enrich insight into track conditions and support
more refined maintenance decision frameworks.

4. CONCLUSIONS

A modular, low-cost railway geometry monitoring system was developed, integrating VL53L0X infrared
sensors and MPU6050 inertial units with Kalman filtering, K-Means clustering, and a fuzzy logic decision
module. The system achieved classification accuracy of 91%, F1-scores exceeding 0.91, and RMSE values of
0.3086 mm gauge (L), 0.8165 mm height (T1), and 0.3086° inclination (A), aligning with EN 13848-1 safety
tolerances. These results confirmed the system's ability to classify track conditions effectively in real time. The
full system cost remained under USD 61.4, with a 65—75% reduction in operational cost compared to manual
inspection procedures, which typically require multiple personnel and analog instrumentation. Portability, low
power requirements, and integrated digital logging were achieved through the use of embedded
microcontrollers, allowing deployment on lightweight, trolley-based platforms without external DAQ systems.
This work presents the first field-deployable solution combining Kalman-KMeans-Fuzzy sensor fusion with
low-cost hardware for embedded railway inspection. Compared to prior systems using high-cost LIDAR or
single-sensor setups, the proposed platform demonstrated improved precision, scalability, and cost-
effectiveness.

Nevertheless, several limitations were identified. The system exhibited sensitivity to IMU drift,
calibration variability, and environmental interference such as mechanical vibration and lighting changes. K-
Means clustering relied on isotropic distance assumptions, and the fuzzy logic module required heuristic
tuning, limiting generalizability across networks. While internal validation metrics supported model
performance, robustness under long-term or high-speed deployment remains to be demonstrated. Future
research will focus on the following areas auto-calibration mechanisms to mitigate long-term drift, edge-
computing modules for real-time inference, expansion to varying track geometries and climates,
standardization of multi-sensor fusion protocols, and integration with predictive analytics platforms and digital
twins for asset lifecycle planning. Collaborations with infrastructure operators are also recommended to
validate interoperability and inform field-based adaptations. The system supports condition-based
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maintenance, aligns with modern railway asset strategies, and may contribute to reduced carbon footprint and
improved sustainability through proactive intervention and minimized downtime.
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