METODE REVERSIBLE JUMP MARKOV CHAIN MONTE CARLO: Estimasi Bayesian dalam Model Regresi Linear per Potongan

Suparman, Dr. (2014) METODE REVERSIBLE JUMP MARKOV CHAIN MONTE CARLO: Estimasi Bayesian dalam Model Regresi Linear per Potongan. In: Senari, 1 November 2014, Bali.

[thumbnail of 141501_B1_16_Senari.pdf]
Preview
Text
141501_B1_16_Senari.pdf - Accepted Version

Download (31MB) | Preview

Abstract

The method used to estimate the parameters of piecewise linear regression is Bayesian method. But the Bayes estimator can not be found analytically. To overcome these problems are proposed the Reversible Jump MCMC Algorithm. Reversible Jump MCMC Algorithm generates the Markov chain converges to the limit distribution of the posterior distribution of the parameters of piecewise linear regression models.Bayes estimator for the parameters of piecewise linear regression models obtained by the Markov chain.

Item Type: Conference or Workshop Item (Paper)
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
Divisi / Prodi: Faculty of Teacher Training and Education (Fakultas Keguruan dan Ilmu Pendidikan) > S1-Mathematics Education (S1-Pendidikan Matematika)
Depositing User: Dr. Suparman M, Si., DEA
Date Deposited: 16 Jun 2016 15:16
Last Modified: 16 Jun 2016 15:16
URI: http://eprints.uad.ac.id/id/eprint/3056

Actions (login required)

View Item View Item